Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Ulrika Ericson

Ulrika Ericson

Associate professor

Ulrika Ericson

Fat and carbohydrate intake modify the association between genetic variation in the FTO genotype and obesity.

Author

  • Emily Sonestedt
  • Charlotta Roos
  • Bo Gullberg
  • Ulrika Ericson
  • Elisabet Wirfält
  • Marju Orho-Melander

Summary, in English

BACKGROUND: The fat mass and obesity-associated gene (FTO) has been shown to be associated with obesity and to influence appetite regulation. OBJECTIVE: The aim was to examine whether dietary factors (macronutrient and fiber intakes) and leisure-time physical activity modify the association between genetic variation in FTO and body mass index (BMI; in kg/m(2)). DESIGN: A cross-sectional study examined 4839 subjects in the population-based Malmö Diet and Cancer study with dietary data (from a modified diet history method) and information on the genetic variant FTO (rs9939609). Direct anthropometric measures were made, and leisure-time physical activity was determined from the duration participants spent on 18 different physical activities. RESULTS: Significant interactions between energy-adjusted fat intake and FTO genotype (P = 0.04) and between carbohydrate intake and FTO genotype (P = 0.001) on BMI were observed. The observed increase in BMI across FTO genotypes was restricted to those who reported a high-fat diet, with a mean BMI of 25.3 (95% CI: 24.9, 25.6) among TT carriers and of 26.3 (95% CI: 25.8, 26.8) among AA carriers (P = 0.0001). The FTO variant was not associated with a higher BMI among subjects with lower fat intakes (BMI = 25.7 and 25.9 in TT carriers and AA carriers, respectively; P = 0.42). Among individuals with a low-carbohydrate intake, we observed a mean BMI of 25.4 for TT carriers and of 26.8 for AA carriers. The increase in BMI across genotypes was mainly restricted to individuals who reported low leisure-time physical activity (P for trend = 0.004, P for interaction = 0.05). CONCLUSION: Our results indicate that high-fat diets and low physical activity levels may accentuate the susceptibility to obesity by the FTO variant.

Department/s

  • Nutrition Epidemiology
  • Genomics, Diabetes and Endocrinology

Publishing year

2009

Language

English

Pages

1418-1425

Publication/Series

The American journal of clinical nutrition

Volume

90

Document type

Journal article

Publisher

Oxford University Press

Topic

  • Nutrition and Dietetics

Status

Published

Research group

  • Nutrition Epidemiology
  • Genomics, Diabetes and Endocrinology

ISBN/ISSN/Other

  • ISSN: 1938-3207