Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Tina Rönn

Tina Rönn

Assistant researcher

Tina Rönn

Genetic variation in ATP5O is associated with skeletal muscle ATP50 mRNA expression and glucose uptake in young twins.

Author

  • Tina Rönn
  • Pernille Poulsen
  • Tiinamaija Tuomi
  • Bo Isomaa
  • Leif Groop
  • Allan Vaag
  • Charlotte Ling

Summary, in English

BACKGROUND: Impaired oxidative capacity of skeletal muscle mitochondria contribute to insulin resistance and type 2 diabetes (T2D). Furthermore, mRNA expression of genes involved in oxidative phosphorylation, including ATP5O, is reduced in skeletal muscle from T2D patients. Our aims were to investigate mechanisms regulating ATP5O expression in skeletal muscle and association with glucose metabolism, and the relationship between ATP5O single nucleotide polymorphisms (SNPs) and risk of T2D. METHODOLOGY/PRINCIPAL FINDINGS: ATP5O mRNA expression was analyzed in skeletal muscle from young (n = 86) and elderly (n = 68) non-diabetic twins before and after a hyperinsulinemic euglycemic clamp. 11 SNPs from the ATP5O locus were genotyped in the twins and a T2D case-control cohort (n = 1466). DNA methylation of the ATP5O promoter was analyzed in twins (n = 22) using bisulfite sequencing. The mRNA level of ATP5O in skeletal muscle was reduced in elderly compared with young twins, both during basal and insulin-stimulated conditions (p<0.0005). The degree of DNA methylation around the transcription start of ATP5O was <1% in both young and elderly twins and not associated with mRNA expression (p = 0.32). The mRNA level of ATP5O in skeletal muscle was positively related to insulin-stimulated glucose uptake (regression coefficient = 6.6; p = 0.02). Furthermore, two SNPs were associated with both ATP5O mRNA expression (rs12482697: T/T versus T/G; p = 0.02 and rs11088262: A/A versus A/G; p = 0.004) and glucose uptake (rs11088262: A/A versus A/G; p = 0.002 and rs12482697: T/T versus T/G; p = 0.005) in the young twins. However, we could not detect any genetic association with T2D. CONCLUSIONS/SIGNIFICANCE: Genetic variation and age are associated with skeletal muscle ATP5O mRNA expression and glucose disposal rate, suggesting that combinations of genetic and non-genetic factors may cause the reduced expression of ATP5O in T2D muscle. These findings propose a role for ATP5O, in cooperation with other OXPHOS genes, in the regulation of in vivo glucose metabolism.

Department/s

  • Genomics, Diabetes and Endocrinology

Publishing year

2009

Language

English

Publication/Series

PLoS ONE

Volume

4

Issue

3

Document type

Journal article

Publisher

Public Library of Science

Topic

  • Endocrinology and Diabetes

Status

Published

Research group

  • Genomics, Diabetes and Endocrinology

ISBN/ISSN/Other

  • ISSN: 1932-6203