Lund University is celebrating 350 years. Read more on lunduniversity.lu.se

Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Leveraging cross-species transcription factor binding site patterns: from diabetes risk Loci to disease mechanisms.

Author:
  • Melina Claussnitzer
  • Simon N Dankel
  • Bernward Klocke
  • Harald Grallert
  • Viktoria Glunk
  • Tea Berulava
  • Heekyoung Lee
  • Nikolay Oskolkov
  • Joao Fadista
  • Kerstin Ehlers
  • Simone Wahl
  • Christoph Hoffmann
  • Kun Qian
  • Tina Rönn
  • Helene Riess
  • Martina Müller-Nurasyid
  • Nancy Bretschneider
  • Timm Schroeder
  • Thomas Skurk
  • Bernhard Horsthemke
  • Derek Spieler
  • Martin Klingenspor
  • Martin Seifert
  • Michael J Kern
  • Niklas Mejhert
  • Ingrid Dahlman
  • Ola Hansson
  • Stefanie M Hauck
  • Matthias Blüher
  • Peter Arner
  • Leif Groop
  • Thomas Illig
  • Karsten Suhre
  • Yi-Hsiang Hsu
  • Gunnar Mellgren
  • Hans Hauner
  • Helmut Laumen
Publishing year: 2014
Language: English
Pages: 343-358
Publication/Series: Cell
Volume: 156
Issue: 1-2
Document type: Journal article
Publisher: Cell Press

Abstract english

Genome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central to disease susceptibility. We show that integrative computational analysis of phylogenetic conservation with a complexity assessment of co-occurring transcription factor binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in disease. Analysis of established type 2 diabetes risk loci revealed a striking clustering of distinct homeobox TFBS. We identified the PRRX1 homeobox factor as a repressor of PPARG2 expression in adipose cells and demonstrate its adverse effect on lipid metabolism and systemic insulin sensitivity, dependent on the rs4684847 risk allele that triggers PRRX1 binding. Thus, cross-species conservation analysis at the level of co-occurring TFBS provides a valuable contribution to the translation of genetic association signals to disease-related molecular mechanisms.

Keywords

  • Endocrinology and Diabetes

Other

Published
  • Diabetes and Endocrinology
  • Epigenetics and Diabetes
  • ISSN: 1097-4172
Tina Rönn
E-mail: tina [dot] ronn [at] med [dot] lu [dot] se

Assistant researcher

Epigenetics and Diabetes

+46 40 39 12 18

CRC 91-12-021

33

Lund University Diabetes Centre, CRC, SUS Malmö, Entrance 72, House 91:12. SE-205 02 Malmö. Telephone: +46 40 39 10 00