Lund University is celebrating 350 years.


Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion.

  • Charlotte Ling
  • S Del Guerra
  • R Lupi
  • Tina Rönn
  • Charlotte Granhall
  • Holger Luthman
  • P Masiello
  • P Marchetti
  • Leif Groop
  • S Del Prato
Publishing year: 2008
Language: English
Pages: 615-622
Publication/Series: Diabetologia
Volume: 51
Document type: Journal article
Publisher: Springer Verlag

Abstract english

AIMS/HYPOTHESIS: Insulin secretion in pancreatic islets is dependent upon mitochondrial function and production of ATP. The transcriptional coactivator peroxisome proliferator activated receptor gamma coactivator-1 alpha (protein PGC-1alpha; gene PPARGC1A) is a master regulator of mitochondrial genes and its expression is decreased and related to impaired oxidative phosphorylation in muscle from patients with type 2 diabetes. Whether it plays a similar role in human pancreatic islets is not known. We therefore investigated if PPARGC1A expression is altered in islets from patients with type 2 diabetes and whether this expression is influenced by genetic (PPARGC1A Gly482Ser polymorphism) and epigenetic (DNA methylation) factors. We also tested if experimental downregulation of PPARGC1A expression in human islets influenced insulin secretion. METHODS: The PPARGC1A Gly482Ser polymorphism was genotyped in human pancreatic islets from 48 non-diabetic and 12 type 2 diabetic multi-organ donors and related to PPARGC1A mRNA expression. DNA methylation of the PPARGC1A promoter was analysed in pancreatic islets from ten type 2 diabetic and nine control donors. Isolated human islets were transfected with PPARGC1A silencing RNA (siRNA). RESULTS: PPARGC1A mRNA expression was reduced by 90% (p < 0.005) and correlated with the reduction in insulin secretion in islets from patients with type 2 diabetes. After downregulation of PPARGC1A expression in human islets by siRNA, insulin secretion was reduced by 41% (p


  • Endocrinology and Diabetes


  • Diabetes and Endocrinology
  • Epigenetics and Diabetes
  • Medical Genetics Unit
  • ISSN: 1432-0428
Tina Rönn
E-mail: tina [dot] ronn [at] med [dot] lu [dot] se

Assistant researcher

Epigenetics and Diabetes

+46 40 39 12 18

CRC 91-12-021


Lund University Diabetes Centre, CRC, SUS Malmö, Entrance 72, House 91:12. SE-205 02 Malmö. Telephone: +46 40 39 10 00