The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Sebastian Kalamajski

Assistant researcher

Default user image.

The tyrosine kinase inhibitor imatinib augments extracellular fluid exchange and reduces average collagen fibril diameter in experimental carcinoma


  • Olof Olsson
  • Renata Gustafsson
  • René In 'T Zandt
  • Tomas Friman
  • Marco Maccarana
  • Emil Tykesson
  • Åke Oldberg
  • Kristofer Rubin
  • Sebastian Kalamajski

Summary, in English

A typical obstacle to cancer therapy is the limited distribution of low molecular weight anticancer drugs within the carcinoma tissue. In experimental carcinoma, imatinib (STI571) increases efficacy of synchronized chemotherapy, reduces tumor interstitial fluid pressure, and increases interstitial fluid volume. STI571 also increases the water-perfusable fraction in metastases from human colorectal adenocarcinomas. Because the mechanism(s) behind these effects have not been fully elucidated, we investigated the hypothesis that STI571 alters specific properties of the stromal extracellular matrix. We analyzed STI571-treated human colorectal KAT-4/HT-29 experimental carcinomas, known to have a welldeveloped stromal compartment, for solute exchange and glycosaminoglycan content, as well as collagen content, structure, and synthesis. MRI of STI571-treated KAT-4/HT-29 experimental carcinomas showed a significantly increased efficacy in dynamic exchanges of solutes between tumor interstitium and blood. This effect was paralleled by a distinct change of the stromal collagen network architecture, manifested by a decreased average collagen fibril diameter, and increased collagen turnover. The glycosaminoglycan content was unchanged. Furthermore, the apparent effects on the stromal cellular composition were limited to a reduction in an NG2-positive stromal cell population. The current data support the hypothesis that the collagen network architecture influences the dynamic exchanges of solutes between blood and carcinoma tissue. It is conceivable that STI571 reprograms distinct nonvascular stromal cells to produce a looser extracellular matrix, ultimately improving transport characteristics for traditional chemotherapeutic agents.


  • Division of Translational Cancer Research
  • Åke Oldberg´s group
  • Lund University Bioimaging Center
  • Matrix Biology

Publishing year







Molecular Cancer Therapeutics





Document type

Journal article


American Association for Cancer Research


  • Cancer and Oncology



Research group

  • Åke Oldberg´s group
  • Matrix Biology


  • ISSN: 1535-7163