The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Albert Salehi

S Albert Salehi

Research team manager

Albert Salehi

ADP mediates inhibition of insulin secretion by activation of P2Y13 receptors in mice.


  • Stefan Amisten
  • Sandra Meidute
  • Chanyuan Tan
  • Björn Olde
  • Ingmar Lundquist
  • S Albert Salehi
  • David Erlinge

Summary, in English

AIMS/HYPOTHESES: To investigate the effects of extracellular purines on insulin secretion from mouse pancreatic islets. METHODS: Mouse islets and beta cells were isolated and examined with mRNA real-time quantification, cAMP quantification and insulin and glucagon secretion. ATP release was measured in MIN6c4 cells. Insulin and glucagon secretion were measured in vivo after glucose injection. RESULTS: Enzymatic removal of extracellular ATP at low glucose levels increased the secretion of both insulin and glucagon, while at high glucose levels insulin secretion was reduced and glucagon secretion was stimulated, indicating an autocrine effect of purines. In MIN6c4 cells it was shown that glucose does induce release of ATP into the extracellular space. Quantitative real-time PCR demonstrated the expression of the ADP receptors P2Y(1) and P2Y(13) in both intact mouse pancreatic islets and isolated beta cells. The stable ADP analogue 2-MeSADP had no effect on insulin secretion. However, co-incubation with the P2Y(1) antagonist MRS2179 inhibited insulin secretion, while co-incubation with the P2Y(13) antagonist MRS2211 stimulated insulin secretion, indicating that ADP acting via P2Y(1) stimulates insulin secretion, while signalling via P2Y(13) inhibits the secretion of insulin. P2Y(13) antagonism through MRS2211 per se increased the secretion of both insulin and glucagon at intermediate (8.3 mmol/l) and high (20 mmol/l) glucose levels, confirming an autocrine role for ADP. Administration of MRS2211 during glucose injection in vivo resulted in both increased secretion of insulin and reduced glucose levels. CONCLUSIONS/INTERPRETATION: In conclusion, ADP acting on the P2Y(13) receptors inhibits insulin release. An antagonist to P2Y(13) increases insulin release and could be evaluated for the treatment of diabetes.


  • Cardiology
  • Islet cell physiology
  • Drug Target Discovery
  • EXODIAB: Excellence of Diabetes Research in Sweden

Publishing year









Jul 1

Document type

Journal article




  • Endocrinology and Diabetes



Research group

  • Islet cell physiology
  • Drug Target Discovery


  • ISSN: 1432-0428