Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Paul Franks

Paul Franks

Principal investigator

Paul Franks

The combined effects of FADS gene variation and dietary fats in obesity-related traits in a population from the far north of Sweden : the GLACIER Study

Author

  • Yan Chen
  • Angela C. Estampador
  • Maria Keller
  • Alaitz Poveda
  • Jonathan Dalla-Riva
  • Ingegerd Johansson
  • Frida Renström
  • Azra Kurbasic
  • Paul W. Franks
  • Tibor V. Varga

Summary, in English

Background: Recent analyses in Greenlandic Inuit identified six genetic polymorphisms (rs74771917, rs3168072, rs12577276, rs7115739, rs174602 and rs174570) in the fatty acid desaturase gene cluster (FADS1-FADS2-FADS3) that are associated with multiple metabolic and anthropometric traits. Our objectives were to systematically assess whether dietary polyunsaturated fatty acid (PUFA) intake modifies the associations between genetic variants in the FADS gene cluster and cardiometabolic traits, and to functionally annotate top-ranking candidates to estimate their regulatory potential. Methods: Data analyses consisted of the following: interaction analyses between the 6 candidate genetic variants and dietary PUFA intake; gene-centric joint analyses to detect interaction signals in the FADS region; haplotype-centric joint tests across 30 haplotype blocks in the FADS region to refine interaction signals; and functional annotation of top-ranking loci from the previous steps. These analyses were undertaken in Swedish adults from the GLACIER Study (N = 5,160); data on genetic variation and eight cardiometabolic traits were used. Results: Interactions were observed between rs174570 and n-6 PUFA intake on fasting glucose (Pint = 0.005) and between rs174602 and n-3 PUFA intake on total cholesterol (Pint = 0.001). Gene-centric analyses demonstrated a statistically significant interaction effect for FADS and n-3 PUFA on triglycerides (Pint = 0.005) considering genetic main effects as random. Haplotype analyses revealed three blocks (Pint < 0.011) that could drive the interaction between FADS and n-3 PUFA on triglycerides; functional annotation of these regions showed that each block harbours a number of highly functional regulatory variants; FADS2 rs5792235 demonstrated the highest functionality score. Conclusions: The association between FADS variants and triglycerides may be modified by PUFA intake. The intronic FADS2 rs5792235 variant is a potential causal variant in the region, having the highest regulatory potential. However, our results suggest that multiple haplotypes may harbour functional variants in a region, rather than a single causal variant.

Department/s

  • Genetic and Molecular Epidemiology
  • EXODIAB: Excellence in Diabetes Research in Sweden
  • EpiHealth: Epidemiology for Health
  • Department of Health Sciences

Publishing year

2019

Language

English

Pages

808-820

Publication/Series

International Journal of Obesity

Volume

43

Issue

4

Document type

Journal article

Publisher

Nature Publishing Group

Topic

  • Nutrition and Dietetics
  • Medical Genetics

Status

Published

Research group

  • Genetic and Molecular Epidemiology

ISBN/ISSN/Other

  • ISSN: 0307-0565