Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Paul Franks

Paul Franks

Principal investigator

Paul Franks

Genetic predisposition to long-term non-diabetic deteriorations in glucose homeostasis: ten-year follow-up of the GLACIER Study.


  • F Renström
  • Dmitry Shungin
  • I Johansson
  • JC Florez
  • G Hallmans
  • FB Hu
  • Paul Franks

Summary, in English

To assess whether recently discovered genetic loci associated with hyperglycemia also predict long-term changes in glycemic traits. Methods: Sixteen fasting glucose-raising loci were genotyped in middle-aged adults from the GLACIER Study, a population-based prospective cohort study from Northern Sweden. Genotypes were tested for association with baseline fasting and 2-hr post-challenge glycemia (N=16,398), and with change in glycemic traits during a 10 year follow-up period (N=4,059). Results: Cross-sectional directionally consistent replication with fasting glucose concentrations was achieved for 12/16 variants; nine variants also associated with impaired fasting glucose (IFG) and seven were independently associated with 2-hr post-challenge glucose concentrations. In prospective analyses corrected for multiple testing, the effect alleles at four loci (GCK rs4607517, ADRA2A rs10885122, DGKB-TMEM195 rs2191349, G6PC2 rs560887) were statistically associated with worsening fasting glucose concentrations during 10-years follow-up. MTNR1B rs10830963, which was predictive of elevated fasting glucose concentrations in cross-sectional analyses, was associated with a protective effect on post-challenge glucose concentrations during follow-up; however, this was only when baseline fasting and 2-hr glucoses were adjusted for. An additive effect of multiple risk alleles on glycemic traits was observed: a weighted genetic risk score (80(th) vs. 20(th) centiles) was associated with a 0.16mmol/l (P=2.4×10(-6)) greater elevation in fasting glucose and a 64% (95% CI:33-201%) higher risk of developing IFG during 10-years follow-up. Conclusions: Our findings imply that genetic profiling might facilitate the early detection of persons who are genetically susceptible to deteriorating glucose control; studies of incident type 2 diabetes and discrete cardiovascular endpoints will help establish whether the magnitude of these changes is clinically relevant.


  • Genomics, Diabetes and Endocrinology
  • EXODIAB: Excellence in Diabetes Research in Sweden
  • EpiHealth: Epidemiology for Health

Publishing year












Document type

Journal article


American Diabetes Association Inc.


  • Endocrinology and Diabetes



Research group

  • Genomics, Diabetes and Endocrinology


  • ISSN: 1939-327X