Lund University is celebrating 350 years. Read more on lunduniversity.lu.se

Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Plasma Levels of Liver-Specific miR-122 is Massively Increased in a Porcine Cardiogenic Shock Model and Attenuated by Hypothermia.

Author:
  • Patrik Gilje
  • Olof Gidlöf
  • Oscar Braun
  • Matthias Götberg
  • Jesper vanderPals
  • Björn Olde
  • David Erlinge
Publishing year: 2012
Language: English
Pages: 234-238
Publication/Series: Shock
Volume: 37
Document type: Journal article
Publisher: BioMedical Press

Abstract english

AIMS:: Tissue-specific circulating microRNAs are released into the blood after organ injury. In an ischemic porcine cardiogenic shock model we investigated the release pattern of cardiacspecific miR-208b and liver-specific miR-122 and assessed the effect of therapeutic hypothermia on their respective plasma levels. METHODS AND RESULTS:: Pigs were anesthetized and cardiogenic shock was induced by inflation of a PCI-balloon in the proximal LAD for 40 minutes followed by reperfusion. After fulfillment of the predefined shock criteria, the pigs were randomized to hypothermia (33°C, n=6) or normothermia (38°C, n=6). Circulating microRNAs were extracted from plasma and measured with quantitative real-time PCR. Tissue specificity was assessed by microRNA extraction from porcine tissues followed by quantitative real-time PCR. In vitro, the release of miR-122 from a cultured hepatocyte cell line exposed to either hypoxia or acidosis was assessed by real-time PCR. miR-122 was found to be highly liver specific whereas miR-208b was expressed exclusively in the heart. In the control group ischemic cardiogenic shock induced a 460.000-fold and a 63.000-fold increase in plasma levels of miR-122 (p<0.05) and miR-208b (p<0.05), respectively. Therapeutic hypothermia significantly diminished the increase of miR-122 compared to the normothermic group (p<0.005). In our model, hypothermia was initiated after coronary reperfusion and did neither affect myocardial damage as previously assessed by magnetic resonance imaging nor the plasma level of miR-208b. CONCLUSIONS:: Our results indicate that liver-specific miR-122 is released into the circulation in the setting of cardiogenic shock and that therapeutic hypothermia significantly reduces the levels of miR-122.

Keywords

  • Cardiac and Cardiovascular Systems

Other

Published
  • Arrhytmias and Cardiac Device treatment
  • Molecular Cardiology
  • ISSN: 1540-0514
E-mail: oscar [dot] braun [at] med [dot] lu [dot] se

Physician

Cardiology

+46 46 17 36 90

32

Project manager

Heart Failure and Mechanical Support

+46 46 17 36 90

32

Research project participant

Molecular Epidemiology and Cardiology

32

Lund University Diabetes Centre, CRC, SUS Malmö, Entrance 72, House 91:12. SE-205 02 Malmö. Telephone: +46 40 39 10 00