Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Olle Melander

Principal investigator

Default user image.

Replication study reveals miR-483-5p as an important target in prevention of cardiometabolic disease

Author

  • Widet Gallo
  • Filip Ottosson
  • Cecilia Kennbäck
  • Amra Jujic
  • Jonathan LS Esguerra
  • Lena Eliasson
  • Olle Melander

Summary, in English

Background

Alterations in levels of circulating micro-RNAs might reflect within organ signaling or subclinical tissue injury that is linked to risk of diabetes and cardiovascular risk. We previously found that serum levels of miR-483-5p is correlated with cardiometabolic risk factors and incidence of cardiometabolic disease in a case–control sample from the populations-based Malmö Diet and Cancer Study Cardiovascular Cohort (MDC-CC). We here aimed at replicating these findings and to test for association with carotid atherosclerosis.
Methods

We measured miR-483-5p in fasting serum of 1223 healthy subjects from the baseline examination of the population-based, prospective cohort study Malmö Offspring Study (MOS) and correlated miR-483-5p to cardiometabolic risk factors and to incidence of diabetes mellitus and coronary artery disease (CAD) during 3.7 (± 1.3) years of follow-up using logistic regression. In both MOS and MDC-CC we related mir-483-5p to carotid atherosclerosis measured with ultrasound.
Results

In cross-sectional analysis miR-483-5p was correlated with BMI, waist circumference, HDL, and sex. After adjustment for age and sex, the association remained significant for all risk factors except for HDL. Logistic regression analysis showed significant associations between miR-483-5p and new-onset diabetes (OR = 1.94, 95% CI 1.06–3.56, p = 0.032) and cardiovascular disease (OR = 1.99, 95% CI 1.06–3.75, p = 0.033) during 3.7 (± 1.3) years of follow-up. Furthermore, miR-483-5p was significantly related with maximum intima-media thickness of the carotid bulb in MDC-CC (p = 0.001), but not in MOS, whereas it was associated with increasing number of plaques in MOS (p = 0.007).
Conclusion

miR-483-5p is related to an unfavorable cardiometabolic risk factor profile and predicts diabetes and CAD, possibly through an effect on atherosclerosis. Our results encourage further studies of possible underlying mechanisms and means of modifying miR-483-5p as a possible interventional target in prevention of cardiometabolic disease.

Department/s

  • Cardiovascular Research - Hypertension
  • EXODIAB: Excellence in Diabetes Research in Sweden
  • Diabetes - Islet Cell Exocytosis
  • Faculty of Medicine
  • EpiHealth: Epidemiology for Health

Publishing year

2021-04-01

Language

English

Publication/Series

BMC Cardiovascular Disorders

Volume

21

Document type

Journal article

Publisher

BioMed Central (BMC)

Topic

  • Cell and Molecular Biology
  • Cardiac and Cardiovascular Systems

Status

Published

Research group

  • Cardiovascular Research - Hypertension
  • Diabetes - Islet Cell Exocytosis

ISBN/ISSN/Other

  • ISSN: 1471-2261