Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Olle Melander

Principal investigator

Default user image.

The effect of LRRK2 loss-of-function variants in humans

Author

  • Nicola Whiffin
  • Leif Groop
  • Olle Melander
  • Peter M. Nilsson
  • Daniel G MacArthur

Summary, in English

Human genetic variants predicted to cause loss-of-function of protein-coding genes (pLoF variants) provide natural in vivo models of human gene inactivation and can be valuable indicators of gene function and the potential toxicity of therapeutic inhibitors targeting these genes1,2. Gain-of-kinase-function variants in LRRK2 are known to significantly increase the risk of Parkinson’s disease3,4, suggesting that inhibition of LRRK2 kinase activity is a promising therapeutic strategy. While preclinical studies in model organisms have raised some on-target toxicity concerns5–8, the biological consequences of LRRK2 inhibition have not been well characterized in humans. Here, we systematically analyze pLoF variants in LRRK2 observed across 141,456 individuals sequenced in the Genome Aggregation Database (gnomAD)9, 49,960 exome-sequenced individuals from the UK Biobank and over 4 million participants in the 23andMe genotyped dataset. After stringent variant curation, we identify 1,455 individuals with high-confidence pLoF variants in LRRK2. Experimental validation of three variants, combined with previous work10, confirmed reduced protein levels in 82.5% of our cohort. We show that heterozygous pLoF variants in LRRK2 reduce LRRK2 protein levels but that these are not strongly associated with any specific phenotype or disease state. Our results demonstrate the value of large-scale genomic databases and phenotyping of human loss-of-function carriers for target validation in drug discovery.

Department/s

  • Genomics, Diabetes and Endocrinology
  • EXODIAB: Excellence in Diabetes Research in Sweden
  • Cardiovascular Research - Hypertension
  • EpiHealth: Epidemiology for Health
  • Internal Medicine - Epidemiology

Publishing year

2020

Language

English

Pages

869-877

Publication/Series

Nature Medicine

Document type

Journal article

Publisher

Nature Publishing Group

Topic

  • Medical Genetics

Status

Published

Research group

  • Genomics, Diabetes and Endocrinology
  • Cardiovascular Research - Hypertension
  • Internal Medicine - Epidemiology

ISBN/ISSN/Other

  • ISSN: 1078-8956