The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Nils Wierup

Nils Wierup

Senior lecturer

Nils Wierup

DPP-4 inhibition improves glucose tolerance and increases insulin and GLP-1 responses to gastric glucose in association with normalized islet topography in mice with beta-cell-specific overexpression of human islet amyloid polypeptide.

Author

  • Bo Ahrén
  • Maria Sorhede Winzell
  • Nils Wierup
  • Frank Sundler
  • Bryan Burkey
  • Thomas E Hughes

Summary, in English

Inhibition of dipeptidyl peptidase-4 (DPP-4) is currently explored as a novel therapy of type 2 diabetes. The strategy has been shown to improve glycemia in most, but not all, rodent forms of glucose intolerance. In this study, we explored the effects of DPP-4 inhibition in mice with [beta-cell overexpression of human islet amyloid polypeptide (IAPP). We therefore administered the orally active and highly selective DPP-4 inhibitor, vildagliptin (3 pmol/mouse daily) to female mice with [beta-cell overexpression of human IAPP. Controls were given plain water, and a series of untreated wildtype mice was also included. After five weeks, an intravenous glucose tolerance test showed improved glucose disposal and a markedly enhanced insulin response in mice treated with vildagliptin. After eight weeks, a gastric tolerance test showed that vildagliptin improved glucose tolerance and markedly (approximately ten-fold) augmented the insulin response in association with augmented (approximately five-fold) levels of intact glucagon-like peptide-1 (GLP-1). Furthermore, after nine weeks, islets were isolated. Islets from vildagliptin-treated mice showed augmented glucose-stimulated insulin response and a normalization of the islet insulin content, which was reduced by approximately 50% in transgenic controls versus wildtype animals. Double immunostaining of pancreatic islets for insulin and glucagon revealed that transgenic islets displayed severely disturbed intra-islet topography with frequently observed centrally located a-cells. Treatment with vildagliptin restored the islet topography. We therefore conclude that DPP-4 inhibition improves islet function and islet topography in mice with [beta-cell specific transgenic overexpression of human IAPP. (c) 2007 Elsevier B.V. All rights reserved.

Department/s

  • Medicine, Lund
  • Department of Experimental Medical Science

Publishing year

2007

Language

English

Pages

97-103

Publication/Series

Regulatory Peptides

Volume

143

Issue

1-3

Document type

Journal article

Publisher

Elsevier

Topic

  • Cell and Molecular Biology

Keywords

  • islet amyloid polypeptide
  • DPP4
  • insulin secretion
  • mice
  • vildagliptin
  • glucose tolerance

Status

Published

ISBN/ISSN/Other

  • ISSN: 1873-1686