Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Naeimeh Atabaki Pasdar

Naeimeh Atabaki Pasdar

Doctoral student

Naeimeh Atabaki Pasdar

Association of Established Blood Pressure Loci With 10-Year Change in Blood Pressure and Their Ability to Predict Incident Hypertension

Author

  • Alaitz Poveda
  • Naeimeh Atabaki-Pasdar
  • Shafqat Ahmad
  • Göran Hallmans
  • Frida Renström
  • Paul W. Franks

Summary, in English

Background Genome-wide association studies have identified >1000 genetic variants cross-sectionally associated with blood pressure variation and prevalent hypertension. These discoveries might aid the early identification of subpopulations at risk of developing hypertension or provide targets for drug development, amongst other applications. The aim of the present study was to analyze the association of blood pressure-associated variants with long-term changes (10 years) in blood pressure and also to assess their ability to predict hypertension incidence compared with traditional risk variables in a Swedish population. Methods and Results We constructed 6 genetic risk scores (GRSs) by summing the dosage of the effect allele at each locus of genetic variants previously associated with blood pressure traits (systolic blood pressure GRS (GRSSBP): 554 variants; diastolic blood pressure GRS (GRSDBP): 481 variants; mean arterial pressure GRS (GRSMAP): 20 variants; pulse pressure GRS (GRSPP): 478 variants; hypertension GRS (GRSHTN): 22 variants; combined GRS (GRScomb): 1152 variants). Each GRS was longitudinally associated with its corresponding blood pressure trait, with estimated effects per GRS SD unit of 0.50 to 1.21 mm Hg for quantitative traits and odds ratios (ORs) of 1.10 to 1.35 for hypertension incidence traits. The GRScomb was also significantly associated with hypertension incidence defined according to European guidelines (OR, 1.22 per SD; 95% CI, 1.10‒1.35) but not US guidelines (OR, 1.11 per SD; 95% CI, 0.99‒1.25) while controlling for traditional risk factors. The addition of GRScomb to a model containing traditional risk factors only marginally improved discrimination (Δarea under the ROC curve = 0.001-0.002). Conclusions GRSs based on discovered blood pressure-associated variants are associated with long-term changes in blood pressure traits and hypertension incidence, but the inclusion of genetic factors in a model composed of conventional hypertension risk factors did not yield a material increase in predictive ability.

Department/s

  • Genetic and Molecular Epidemiology
  • EXODIAB: Excellence of Diabetes Research in Sweden
  • EpiHealth: Epidemiology for Health

Publishing year

2020

Language

English

Pages

014513-014513

Publication/Series

Journal of the American Heart Association

Volume

9

Issue

16

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Cardiac and Cardiovascular Systems
  • Medical Genetics

Keywords

  • association
  • blood pressure
  • genetics
  • hypertension
  • incidence
  • prediction

Status

Published

Research group

  • Genetic and Molecular Epidemiology

ISBN/ISSN/Other

  • ISSN: 2047-9980