The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Photo: KG Pressfoto

Marju Orho-Melander

Professor

Photo: KG Pressfoto

Excess maternal transmission of variants in the THADA gene to offspring with type 2 diabetes

Author

  • Rashmi B. Prasad
  • Anna Lessmark
  • Peter Almgren
  • Györgyi Kovacs
  • Ola Hansson
  • Nikolay Oskolkov
  • Marta Vitai
  • Claes Ladenvall
  • Peter Kovacs
  • Joao Fadista
  • Michael Lachmann
  • Yuedan Zhou
  • Emily Sonestedt
  • Wenny Poon
  • Claes B. Wollheim
  • Marju Orho-Melander
  • Michael Stumvoll
  • Tiinamaija Tuomi
  • Svante Pääbo
  • Laszlo Koranyi
  • Leif Groop

Summary, in English

Aims/hypothesis: Genome-wide association studies (GWAS) have identified more than 65 genetic loci associated with risk of type 2 diabetes. However, the contribution of distorted parental transmission of alleles to risk of type 2 diabetes has been mostly unexplored. Our goal was therefore to search for parent-of-origin effects (POE) among type 2 diabetes loci in families. Methods: Families from the Botnia study (n = 4,211, 1,083 families) were genotyped for 72 single-nucleotide polymorphisms (SNPs) associated with type 2 diabetes and assessed for POE on type 2 diabetes. The family-based Hungarian Transdanubian Biobank (HTB) (n = 1,463, >135 families) was used to replicate SNPs showing POE. Association of type 2 diabetes loci within families was also tested. Results: Three loci showed nominal POE, including the previously reported variants in KCNQ1, for type 2 diabetes in families from Botnia (rs2237895: pPOE = 0.037), which can be considered positive controls. The strongest POE was seen for rs7578597 SNP in the THADA gene, showing excess transmission of the maternal risk allele T to diabetic offspring (Botnia: pPOE = 0.01; HTB pPOE = 0.045). These data are consistent with previous evidence of allelic imbalance for expression in islets, suggesting that the THADA gene can be imprinted in a POE-specific fashion. Five CpG sites, including those flanking rs7578597, showed differential methylation between diabetic and non-diabetic donor islets. Conclusions/interpretation: Taken together, the data emphasise the need for genetic studies to consider from which parent an offspring has inherited a susceptibility allele.

Department/s

  • Genomics, Diabetes and Endocrinology
  • Diabetes - Cardiovascular Disease
  • EXODIAB: Excellence of Diabetes Research in Sweden
  • EpiHealth: Epidemiology for Health

Publishing year

2016-08

Language

English

Pages

1702-1713

Publication/Series

Diabetologia

Volume

59

Issue

8

Document type

Journal article

Publisher

Springer

Topic

  • Medical Genetics
  • Endocrinology and Diabetes

Keywords

  • Families
  • Genetic association studies
  • KCNQ1
  • Maternal effects
  • Methylation
  • Parent-of-origin
  • Parental transmission
  • THADA
  • Type 2 diabetes

Status

Published

Research group

  • Genomics, Diabetes and Endocrinology
  • Diabetes - Cardiovascular Disease

ISBN/ISSN/Other

  • ISSN: 0012-186X