Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Maria Gomez

Maria Gomez


Maria Gomez

NFAT regulates neutrophil recruitment, systemic inflammation and T-cell dysfunction in abdominal sepsis.


  • Su Zhang
  • Lingtao Luo
  • Yongzhi Wang
  • Maria Gomez
  • Henrik Thorlacius

Summary, in English

The signaling mechanisms regulating neutrophil recruitment, systemic inflammation and T-cell dysfunction in polymicrobial sepsis are not clear. This study explored the potential involvement of the calcium/calcineurin-dependent transcription factor, nuclear factor of activated T-cells (NFAT) in abdominal sepsis. Cecal ligation and puncture (CLP) triggered NFAT-dependent transcriptional activity in the lung, spleen, liver and aorta in NFAT-luciferase reporter mice. Treatment with the NFAT inhibitor A-285222 prior to CLP completely prevented sepsis-induced NFAT activation in all these organs. Inhibition of NFAT activity reduced sepsis-induced formation of CXCL1, CXCL2 and CXCL5 chemokines and edema as well as neutrophil infiltration in the lung. Notably, NFAT inhibition efficiently reduced the CLP-evoked increases in HMBG1, IL-6 and CXCL5 levels in plasma. Moreover, administration of A-285222 restored sepsis-induced T-cell dysfunction, as evidenced by markedly decreased apoptosis and restored proliferative capacity of CD4 T-cells. Along these lines, treatment with A-285222 restored IFN-γ and IL-4 levels in the spleen, which were markedly reduced in septic mice. CLP-induced formation of regulatory T-cells (CD4(+)CD25(+)Foxp3(+)) in the spleen was also abolished in A-285222-treated animals. Altogether, these novel findings suggest that NFAT is a powerful regulator of pathological inflammation and T-cell immune dysfunction in abdominal sepsis. Thus, our data suggest that NFAT signaling might be a useful target to protect against respiratory failure and immunosuppression in patients with sepsis.


  • Surgery
  • Diabetic Complications
  • EXODIAB: Excellence in Diabetes Research in Sweden

Publishing year







Infection and Immunity





Document type

Journal article


American Society for Microbiology


  • Cardiac and Cardiovascular Systems
  • Surgery
  • Endocrinology and Diabetes



Research group

  • Surgery
  • Diabetic Complications


  • ISSN: 1098-5522