Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Maria Gomez

Maria Gomez

Professor

Maria Gomez

Novel blocker of NFAT activation inhibits IL-6 production in human myometrial arteries and reduces vascular smooth muscle cell proliferation

Author

  • Lisa Berglund
  • Zhengwu Sun
  • Jenny Nilsson
  • Ina Nordström
  • Yung-Wu Chen
  • Jeffery D Molkentin
  • Dag Wide-Swensson
  • Per Hellstrand
  • Marie-Louise Lydrup
  • Maria Gomez

Summary, in English

The calcineurin/nuclear factor of activated T cells ( NFAT) signaling pathway has been found to play a role in regulating growth and differentiation in several cell types. However, the functional significance of NFAT in the vasculature is largely unclear. Here we show that NFATc1, NFATc3, and NFATc4 are expressed in human myometrial arteries. Confocal immunofluorescence and Western blot analysis revealed that endothelin-1 efficiently increases NFATc3 nuclear accumulation in native arteries. Endothelin-1 also stimulates NFAT-dependent transcriptional activity, as shown by a luciferase reporter assay. Both the agonist-induced NFAT nuclear accumulation and transcriptional activity were prevented by the calcineurin inhibitor CsA and by the novel NFAT blocker A-285222. Chronic inhibition of NFAT significantly reduced IL-6 production in intact myometrial arteries and inhibited cell proliferation in vascular smooth muscle cells cultured from explants from the same arteries. Furthermore, by using small interfering RNA-mediated reduction of NFATc3, we show that this isoform is involved in the regulation of cell proliferation. Protein synthesis in intact arteries was investigated using autoradiography of [S-35] methionine incorporation in serum-free culture. Inhibition of NFAT signaling did not affect overall protein synthesis or specifically the synthesis rates of major proteins associated with the contractile/cytoskeletal system. An intact contractile phenotype under these conditions was also shown by unchanged force response to depolarization or agonist stimulation. Our results demonstrate NFAT expression and activation in native human vessels and point out A-285222 as a powerful pharmacological blocker of NFAT signaling in the vasculature.

Department/s

  • Vascular Physiology
  • Surgery (Lund)
  • Cellular Biomechanics
  • Obstetrics and Gynaecology (Lund)

Publishing year

2007

Language

English

Pages

1167-1178

Publication/Series

American Journal of Physiology: Cell Physiology

Volume

292

Issue

3

Document type

Journal article

Publisher

American Physiological Society

Topic

  • Obstetrics, Gynecology and Reproductive Medicine
  • Basic Medicine
  • Surgery

Keywords

  • contractility
  • differentiation
  • cyclosporin A
  • endothelin-1
  • Ca2+/calcineurin

Status

Published

Research group

  • Vascular Physiology
  • Cellular Biomechanics

ISBN/ISSN/Other

  • ISSN: 1522-1563