The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Leif Groop

Leif Groop

Principal investigator

Leif Groop

Prioritizing genes for follow-up from genome wide association studies using information on gene expression in tissues relevant for type 2 diabetes mellitus

Author

  • Hemang Parikh
  • Valeriya Lyssenko
  • Leif Groop

Summary, in English

Background: Genome-wide association studies (GWAS) have emerged as a powerful approach for identifying susceptibility loci associated with polygenetic diseases such as type 2 diabetes mellitus (T2DM). However, it is still a daunting task to prioritize single nucleotide polymorphisms (SNPs) from GWAS for further replication in different population. Several recent studies have shown that genetic variation often affects gene-expression at proximal (cis) as well as distal (trans) genomic locations by different mechanisms such as altering rate of transcription or splicing or transcript stability. Methods: To prioritize SNPs from GWAS, we combined results from two GWAS related to T2DM, the Diabetes Genetics Initiative (DGI) and the Wellcome Trust Case Control Consortium (WTCCC), with genome-wide expression data from pancreas, adipose tissue, liver and skeletal muscle of individuals with or without T2DM or animal models thereof to identify T2DM susceptibility loci. Results: We identified 1,170 SNPs associated with T2DM with P < 0.05 in both GWAS and 243 genes that were located in the vicinity of these SNPs. Out of these 243 genes, we identified 115 differentially expressed in publicly available gene expression profiling data. Notably five of them, IGF2BP2, KCNJ11, NOTCH2, TCF7L2 and TSPAN8, have subsequently been shown to be associated with T2DM in different populations. To provide further validation of our approach, we reversed the approach and started with 26 known SNPs associated with T2DM and related traits. We could show that 12 (57%) (HHEX, HNF1B, IGF2BP2, IRS1, KCNJ11, KCNQ1, NOTCH2, PPARG, TCF7L2, THADA, TSPAN8 and WFS1) out of 21 genes located in vicinity of these SNPs were showing aberrant expression in T2DM from the gene expression profiling studies. Conclusions: Utilizing of gene expression profiling data from different tissues of individuals with or without T2DM or animal models thereof is a powerful tool for prioritizing SNPs from WGAS for further replication studies.

Department/s

  • Genomics, Diabetes and Endocrinology

Publishing year

2009

Language

English

Publication/Series

BMC Medical Genomics

Volume

2

Document type

Journal article

Publisher

BioMed Central (BMC)

Topic

  • Medical Genetics

Status

Published

Research group

  • Genomics, Diabetes and Endocrinology

ISBN/ISSN/Other

  • ISSN: 1755-8794