The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Leif Groop

Leif Groop

Principal investigator

Leif Groop

Down-regulation of insulin receptor substrates (IRS)-1 and IRS-2 and Src homologous and collagen-like protein Shc gene expression by insulin in skeletal muscle is not associated with insulin resistance or type 2 diabetes.

Author

  • Xudong Huang
  • Allan Vaag
  • Mona Hansson
  • Leif Groop

Summary, in English

To examine whether altered gene expression of insulin receptor substrates (IRS)-1 and IRS-2 and Src homologous and collagen-like protein Shc is an inherited trait and is associated with muscle insulin resistance or type 2 diabetes, we measured mRNA levels of these genes by a relative quantitative RT-PCR method in muscle biopsies taken before and after an insulin clamp from 12 monozygotic twin pairs discordant for type 2 diabetes and 12 control subjects. Insulin-stimulated glucose uptake was decreased both in the diabetic and nondiabetic twin, compared with healthy control subjects (5.2 +/- 0.7 and 8.5 +/- 0.8 vs. 11.4 +/- 0.9 mg/kg x min(-1); P < 0.01 and P < 0.02, respectively). Basal mRNA levels of IRS-1, IRS-2, and Shc were similar in the diabetic and nondiabetic twins as well as in the control subjects. Insulin decreased mRNA expression of IRS-1 by 72% (from 0.75 +/- 0.06 to 0.21 +/- 0.04 relative units; P < 0.001), IRS-2 by 71% (from 0.55 +/- 0.10 to 0.16 +/- 0.08 relative units; P < 0.03), and Shc by 25% (from 0.95 +/- 0.04 to 0.71 +/- 0.04 relative units; P < 0.01) vs. baseline as demonstrated in the control subjects. The postclamp Shc mRNA level was slightly higher in the diabetic twins (P = 0.05) but similar in the nondiabetic twins, as compared with the control subjects, whereas postclamp IRS-1 and IRS-2 mRNA levels were similar between the study groups. There was an inverse correlation between postclamp Shc mRNA concentration and glucose uptake (r = -0.53, P = 0.01; n = 22) in the controls and nondiabetic twins. However, the decrease in Shc gene expression by insulin was not significantly different between the study groups. In conclusion, because insulin down-regulates IRS-1, IRS-2, and Shc gene expression in skeletal muscle in diabetic and nondiabetic monozygotic twins and control subjects to the same extent, it is unlikely that expression of these genes is an inherited trait or contributes to skeletal muscle insulin resistance.

Department/s

  • Department of Clinical Sciences, Malmö
  • Genomics, Diabetes and Endocrinology

Publishing year

2002

Language

English

Pages

255-259

Publication/Series

Journal of Clinical Endocrinology and Metabolism

Volume

87

Issue

1

Document type

Journal article

Publisher

Oxford University Press

Topic

  • Endocrinology and Diabetes

Keywords

  • Phosphoproteins : metabolism
  • Muscle Skeletal : metabolism
  • Diabetes Mellitus Non-Insulin-Dependent : metabolism
  • Middle Age
  • Diseases in Twins
  • Down-Regulation
  • Female
  • Glucose Clamp Technique
  • Insulin : metabolism
  • Human
  • Proteins : metabolism
  • src Homology Domains
  • Support Non-U.S. Gov't
  • Insulin Resistance
  • Male

Status

Published

Research group

  • Genomics, Diabetes and Endocrinology

ISBN/ISSN/Other

  • ISSN: 1945-7197