The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Leif Groop

Leif Groop

Principal investigator

Leif Groop

Insights Into the Molecular Mechanism for Type 2 Diabetes Susceptibility at the KCNQ1 Locus From Temporal Changes in Imprinting Status in Human Islets

Author

  • Mary E. Travers
  • Deborah J. G. Mackay
  • Marloes Dekker Nitert
  • Andrew P. Morris
  • Cecilia M. Lindgren
  • Andrew Berry
  • Paul R. Johnson
  • Neil Hanley
  • Leif Groop
  • Mark I. McCarthy
  • Anna L. Gloyn

Summary, in English

The molecular basis of type 2 diabetes predisposition at most established susceptibility loci remains poorly understood. KCNQ1 maps within the 11p15.5 imprinted domain, a region with an established role in congenital growth phenotypes. Variants intronic to KCNQ1 influence diabetes susceptibility when maternally inherited. By use of quantitative PCR and pyrosequencing of human adult islet and fetal pancreas samples, we investigated the imprinting status of regional transcripts and aimed to determine whether type 2 diabetes risk alleles influence regional DNA methylation and gene expression. The results demonstrate that gene expression patterns differ by developmental stage. CDKN1C showed monoallelic expression in both adult and fetal tissue, whereas PHLDA2, SLC22A18, and SLC22A18AS were biallelically expressed in both tissues. Temporal changes in imprinting were observed for KCNQ1 and KCNQ10T1, with monoallelic expression in fetal tissues and biallelic expression in adult samples. Genotype at the type 2 diabetes risk variant rs2237895 influenced methylation levels of regulatory sequence in fetal pancreas but without demonstrable effects on gene expression. We demonstrate that CDKN1C, KCNQ1, and KCNQ10T1 are most likely to mediate diabetes susceptibility at the KCNQ1 locus and identify temporal differences in imprinting status and methylation effects, suggesting that diabetes risk effects may be mediated in early development. Diabetes 62:987-992, 2013

Department/s

  • Genomics, Diabetes and Endocrinology
  • EXODIAB: Excellence of Diabetes Research in Sweden

Publishing year

2013

Language

English

Pages

987-992

Publication/Series

Diabetes

Volume

62

Issue

3

Document type

Journal article

Publisher

American Diabetes Association Inc.

Topic

  • Endocrinology and Diabetes

Status

Published

Research group

  • Genomics, Diabetes and Endocrinology

ISBN/ISSN/Other

  • ISSN: 1939-327X