The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Leif Groop

Leif Groop

Principal investigator

Leif Groop

Epigenetic regulation of glucose-stimulated osteopontin (OPN) expression in diabetic kidney.


  • Mengyin Cai
  • Bompada Pradeep
  • David Grubich Atac
  • Markku Laakso
  • Leif Groop
  • Yang De Marinis

Summary, in English

Diabetes nephropathy (DN) is the leading cause of end stage renal disease and it affects up to 40% of diabetic patients. In addition to hyperglycemia, genetic factors are thought to contribute to the development of DN, but few if any genetic factors have been convincingly linked to DN. Other possible mechanisms may involve epigenetic regulation of glucose-stimulated gene activity which was suggested to explain long-term effects of poor glycemic control on risk of diabetic complications, often referred to as metabolic memory. Osteopontin (OPN) is one of the genes upregulated in kidneys from diabetic mouse models as well as humans with DN, and suggested to play an important role in the pathogenesis of DN. In this study, we demonstrated that OPN gene expression is upregulated in the kidneys of a hyperglycemia diabetes mouse model SUR1-E1506K, and glucose-stimulated OPN gene expression is strongly associated with increases in activating histone marks H3K9ac, H3K4me1 and H3K4me3 and decrease in inactivating mark H3K27me3 in the promoter region of OPN gene. These findings were replicated in human mesangial cells treated with high glucose. Further proof for the involvement of histone acetylation and methylation in glucose-induced changes in OPN gene expression was obtained by manipulating histone modifications thereby OPN gene expression by histone deacetylase (HDAC) inhibitor trichostatin A and histone methyltransferase (HMT) inhibitor MM-102. We conclude that glucose is a potent inducer of histone acetylation and methylation, which in turn leads to upregulation of OPN gene expression. Treatment targeting histone marks may therefore represent an alternative method to protect kidneys from deleterious effects of glucose.


  • Genomics, Diabetes and Endocrinology
  • EXODIAB: Excellence of Diabetes Research in Sweden

Publishing year







Biochemical and Biophysical Research Communications





Document type

Journal article




  • Endocrinology and Diabetes



Research group

  • Genomics, Diabetes and Endocrinology


  • ISSN: 1090-2104