The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

ludc web

Joao Duarte

Research team manager

ludc web

Caffeine consumption attenuates neurochemical modifications in the hippocampus of streptozotocin-induced diabetic rats


  • João M N Duarte
  • Rui A. Carvalho
  • Rodrigo A Cunha
  • Rolf Gruetter

Summary, in English

Type 1 diabetes can affect hippocampal function triggering cognitive impairment through unknown mechanisms. Caffeine consumption prevents hippocampal degeneration and memory dysfunction upon different insults and is also known to affect peripheral glucose metabolism. Thus we now characterized glucose transport and the neurochemical profile in the hippocampus of streptozotocin-induced diabetic rats using in vivo(1)H NMR spectroscopy and tested the effect of caffeine consumption thereupon. We found that hippocampal glucose content and transport were unaltered in diabetic rats, irrespective of caffeine consumption. However diabetic rats displayed alterations in their hippocampal neurochemical profile, which were normalized upon restoration of normoglycaemia, with the exception of myo-inositol that remained increased (36 +/- 5%, p < 0.01 compared to controls) likely reflecting osmolarity deregulation. Compared to controls, caffeine-consuming diabetic rats displayed increased hippocampal levels of myo-inositol (15 +/- 5%, p < 0.05) and taurine (23 +/- 4%, p < 0.01), supporting the ability of caffeine to control osmoregulation. Compared to controls, the hippocampus of diabetic rats displayed a reduced density of synaptic proteins syntaxin, synaptophysin and synaptosome-associated protein of 25 kDa (in average 18 +/- 1%, p < 0.05) as well increased glial fibrillary acidic protein (20 +/- 5%, p < 0.05), suggesting synaptic degeneration and astrogliosis, which were prevented by caffeine consumption. In conclusion, neurochemical alterations in the hippocampus of diabetic rats are not related to defects of glucose transport but likely reflect osmoregulatory adaptations caused by hyperglycemia. Furthermore, caffeine consumption affected this neurochemical adaptation to high glucose levels, which may contribute to its potential neuroprotective effects, namely preventing synaptic degeneration and astrogliosis.

Publishing year







Journal of Neurochemistry





Document type

Journal article




  • Animals
  • Blood Glucose
  • Caffeine
  • Central Nervous System Stimulants
  • Chronic Disease
  • Diabetes Mellitus, Experimental
  • Gliosis
  • Hippocampus
  • Inositol
  • Magnetic Resonance Spectroscopy
  • Male
  • Models, Biological
  • Nerve Degeneration
  • Rats
  • Rats, Sprague-Dawley
  • Synapses
  • Taurine
  • Journal Article
  • Research Support, Non-U.S. Gov't




  • ISSN: 1471-4159