Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Hindrik Mulder

Hindrik Mulder

Principal investigator

Hindrik Mulder

Anaplerosis via pyruvate carboxylase is required for the fuel-induced rise in the ATP:ADP ratio in rat pancreatic islets.


  • Ulrika Krus
  • Anders Rosengren
  • F Schuit
  • Erik Renström
  • Hindrik Mulder

Summary, in English

AIMS/HYPOTHESIS: The molecular mechanisms of insulin release are only partially known. Among putative factors for coupling glucose metabolism to insulin secretion, anaplerosis has lately received strong support. The anaplerotic enzyme pyruvate carboxylase is highly expressed in beta cells, and anaplerosis influences insulin secretion in beta cells. By inhibiting pyruvate carboxylase in rat islets, we aimed to clarify the hitherto unknown metabolic events underlying anaplerotic regulation of insulin secretion. METHODS: Phenylacetic acid (5 mmol/l) was used to inhibit pyruvate carboxylase in isolated rat islets, which were then assessed for insulin secretion, fuel oxidation, ATP:ADP ratio, respiration, mitochondrial membrane potential, exocytosis and ATP-sensitive K(+) channel (K(ATP)-channel) conductance. RESULTS: We found that the glucose-provoked rise in ATP:ADP ratio was suppressed by inhibition of pyruvate carboxylase. In contrast, fuel oxidation, respiration and mitochondrial membrane potential, as well as Ca(2+)-induced exocytosis and K(ATP)-channel conductance in single cells, were unaffected. Insulin secretion induced by alpha-ketoisocaproic acid was suppressed, whereas methyl-succinate-stimulated secretion remained unchanged. Perifusion of rat islets revealed that inhibition of anaplerosis decreased both the second phase of insulin secretion, during which K(ATP)-independent actions of fuel secretagogues are operational, as well as the first and K(ATP)-dependent phase. CONCLUSIONS/INTERPRETATION: Our results are consistent with the concept that anaplerosis via pyruvate carboxylase determines pyruvate cycling, which has previously been shown to correlate with glucose responsiveness in clonal beta cells. These processes, controlled by pyruvate carboxylase, seem crucial for generation of an appropriate ATP:ADP ratio, which may regulate both phases of fuel-induced insulin secretion.


  • Diabetes - Islet Patophysiology
  • Diabetes - Molecular Metabolism

Publishing year












Document type

Journal article




  • Endocrinology and Diabetes


  • Insulin secretion
  • Mitochondria
  • Type 2 diabetes



Research group

  • Diabetes - Islet Patophysiology
  • Diabetes - Molecular Metabolism


  • ISSN: 1432-0428