Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Filip Ottosson

Research student

Default user image.

The gut microbiota-related metabolite phenylacetylglutamine associates with increased risk of incident coronary artery disease

Author

  • Filip Ottosson
  • Louise Brunkwall
  • Einar Smith
  • Marju Orho-Melander
  • Peter M. Nilsson
  • Céline Fernandez
  • Olle Melander

Summary, in English

OBJECTIVE: The gut microbiota is increasingly being implicated in cardiovascular health. Metabolites produced by bacteria have been suggested to be mediators in the bacterial action on cardiovascular health. We aimed to identify gut microbiota-related plasma metabolites and test whether these metabolites associate with future risk of coronary artery disease (CAD). METHODS: Nontargeted metabolomics was performed using liquid chromatography-mass spectrometry in order to measure 1446 metabolite features in the Malmö Offspring Study (MOS) (N = 776). The gut microbiota was characterized using 16S rRNA sequencing. Gut bacteria-related metabolites were measured in two independent prospective cohorts, the Malmö Diet and Cancer - Cardiovascular Cohort (MDC-CC) (N = 3361) and the Malmö Preventive Project (MPP) (N = 880), in order to investigate the associations between gut bacteria-related metabolites and risk of CAD. RESULTS: In MOS, 33 metabolite features were significantly (P < 4.8e-7) correlated with at least one operational taxonomic unit. Phenylacetylglutamine (PAG) was associated with an increased risk of future CAD, using inverse variance weighted meta-analysis of age and sex-adjusted logistic regression models in MDC-CC and MPP. PAG remained significantly associated with CAD (OR = 1.17, 95% CI = 1.06-1.29, P = 1.9e-3) after adjustments for cardiovascular risk factors. CONCLUSION: The levels of 33 plasma metabolites were correlated with the gut microbiota. Out of these, PAG was associated with an increased risk of future CAD independently of other cardiovascular risk factors. Our results highlight a link between the gut microbiota and CAD risk and should encourage further studies testing if modification of PAG levels inhibits development of CAD.

Department/s

  • Cardiovascular Research - Hypertension
  • EXODIAB: Excellence of Diabetes Research in Sweden
  • Diabetes - Cardiovascular Disease
  • EpiHealth: Epidemiology for Health
  • Internal Medicine - Epidemiology

Publishing year

2020-12-01

Language

English

Pages

2427-2434

Publication/Series

Journal of Hypertension

Volume

38

Issue

12

Document type

Journal article

Publisher

Lippincott Williams & Wilkins

Topic

  • Cardiac and Cardiovascular Systems

Status

Published

Research group

  • Cardiovascular Research - Hypertension
  • Diabetes - Cardiovascular Disease
  • Internal Medicine - Epidemiology

ISBN/ISSN/Other

  • ISSN: 1473-5598