The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Eva Degerman

Eva Degerman

Research team manager

Eva Degerman

Expression and characterization of deletion recombinants of two cGMP-inhibited cyclic nucleotide phosphodiesterases (PDE-3)

Author

  • R He
  • N Komas
  • Dag Ekholm
  • T Murata
  • M Taira
  • S Hockman
  • Eva Degerman
  • V C Manganiello

Summary, in English

cDNAs encoding two PDE-3 or cyclic GMP-inhibited (cGI) cyclic nucleotide phosphodiesterase (PDE) isoforms, RPDE-3B (RcGIP1) and HPDE-3A (HcGIP2), were cloned from rat (R) adipose tissue and human (H) heart cDNA libraries. Deletion and N- and C-terminal truncation mutants were expressed in Escherichia coli in order to define their catalytic core. Active mutants of both RPDE-3B and HPDE-3A included the domain conserved among all PDEs plus additional upstream and downstream sequences. An RPDE-3B mutant consisting of the conserved domain alone and one from which the RPDE-3B 44-amino acid insertion was deleted exhibited little or no activity. All active recombinants exhibited a high affinity (< 1 microM) for cyclic AMP (cAMP) and cyclic GMP (cGMP), were inhibited by cAMP, cGMP, and cilostamide, but not by rolipram, and were photolabeled with [32P]-cGMP. The IC50 values for cGMP inhibition of cAMP hydrolysis were lower for HPDE-3A than for RPDE-3B recombinants. The deduced amino acid sequences of HPDE-3A and RPDE-3B catalytic domains are very similar except for the 44-amino acid insertion not found in other PDEs. It is possible that this insertion may not only distinguish PDE-3 catalytic domains from other PDEs and identify catalytic domains of PDE-3 subfamilies or conserved members of the PDE-3 gene family, but may also be involved in the regulation of sensitivity of PDE-3s to cGMP.

Department/s

  • Insulin Signal Transduction

Publishing year

1998

Language

English

Pages

89-111

Publication/Series

Cell Biochemistry and Biophysics

Volume

29

Issue

1-2

Document type

Journal article

Publisher

Humana Press

Topic

  • Endocrinology and Diabetes

Status

Published

Research group

  • Insulin Signal Transduction

ISBN/ISSN/Other

  • ISSN: 1085-9195