Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Eva Degerman

Eva Degerman

Professor

Eva Degerman

Bis- and tris(pyridyl)amine-oxidovanadium complexes: characteristics and insulin-mimetic potential.

Author

  • Jessica Nilsson
  • Eva Degerman
  • Matti Haukka
  • George C Lisensky
  • Eugenio Garribba
  • Yutaka Yoshikawa
  • Hiromu Sakurai
  • Eva A Enyedy
  • Tamás Kiss
  • Hossein Esbak
  • Dieter Rehder
  • Ebbe Nordlander

Summary, in English

Two novel vanadium complexes, [V(IV)O(bp-O)(HSO4)] (1) and [V(IV)O(bp-OH)Cl2] x CH3OH (2 x CH3OH), where bp-OH is 2-{[bis(pyrid-2-yl)methyl]amine}methylphenol, were prepared and structurally characterised. EPR spectra of methanol solutions of 2 suggest exchange of Cl- for CH3OH and partial conversion to [VO(bp-OH)(CH3OH)3]2+. Speciation studies on the VO2+-bpOH system in a water/dmso mixture (4:1 v/v) revealed [VO(bp-O)(H2O)n]+ as the dominating species in the pH range 2-7. The insulin-mimetic properties of 1 and 2, [V(IV)O(SO4)tpa] (3), [V(IV)O(pic-trpMe)2] (5) and the new mixed-ligand complexes [V(V)O(pic-trpH)tpa]Cl2 (4Cl2) and [V(V)O(pic-OEt)tpa]Cl2 (6Cl2), tpa = tris(pyrid-2-yl)methylamine, picH-trpH = 2-carboxypyridine-5-(L-tryptophan)carboxamide (picH-trpMe is the respective tryptophanmethyl ester), pic-OEt = 5-carboethoxypyridine-2-carboxylic acid, were evaluated with rat adipocytes, employing two lipolysis assays (release of glycerol and free fatty acids (FFA)), respectively and a lipogenesis assay (incorporation of glucose into lipids). The IC50 values for the inhibition of lipolysis in the FFA assay vary between 0.41 (+/-0.03) (5) and 21.2 (+/-0.6) mM (2), as compared to 0.81 (+/-0.2) mM for VOSO4.

Department/s

  • Chemical Physics
  • Insulin Signal Transduction

Publishing year

2009

Language

English

Pages

7902-7911

Publication/Series

Dalton Transactions

Issue

38

Document type

Journal article

Publisher

Royal Society of Chemistry

Topic

  • Endocrinology and Diabetes

Status

Published

Research group

  • Insulin Signal Transduction

ISBN/ISSN/Other

  • ISSN: 1477-9234