The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Eva Degerman

Eva Degerman


Eva Degerman

Cyclic nucleotide phosphodiesterase 3B is a downstream target of protein kinase B and may be involved in regulation of effects of protein kinase B on thymidine incorporation in FDCP2 cells


  • F Ahmad
  • L N Cong
  • Lena Stenson
  • L M Wang
  • Tova Landström
  • J H Pierce
  • M J Quon
  • Eva Degerman
  • V C Manganiello

Summary, in English

Wild-type (F/B), constitutively active (F/B*), and three kinase-inactive (F/Ba-, F/Bb-, F/Bc-) forms of Akt/protein kinase B (PKB) were permanently overexpressed in FDCP2 cells. In the absence of insulin-like growth factor-1 (IGF-1), activities of PKB, cyclic nucleotide phosphodiesterase 3B (PDE3B), and PDE4 were similar in nontransfected FDCP2 cells, mock-transfected (F/V) cells, and F/B and F/B- cells. In F/V cells, IGF-1 increased PKB, PDE3B, and PDE4 activities approximately 2-fold. In F/B cells, IGF-1, in a wortmannin-sensitive manner, increased PKB activity approximately 10-fold and PDE3B phosphorylation and activity ( approximately 4-fold), but increased PDE4 to the same extent as in F/V cells. In F/B* cells, in the absence of IGF-1, PKB activity was markedly increased ( approximately 10-fold) and PDE3B was phosphorylated and activated (3- to 4-fold); wortmannin inhibited these effects. In F/B* cells, IGF-1 had little further effect on PKB and activation/phosphorylation of PDE3B. In F/B- cells, IGF-1 activated PDE4, not PDE3B, suggesting that kinase-inactive PKB behaved as a dominant negative with respect to PDE3B activation. Thymidine incorporation was greater in F/B* cells than in F/V cells and was inhibited to a greater extent by PDE3 inhibitors than by rolipram, a PDE4 inhibitor. In F/B cells, IGF-1-induced phosphorylation of the apoptotic protein BAD was inhibited by the PDE3 inhibitor cilostamide. Activated PKB phosphorylated and activated rPDE3B in vitro. These results suggest that PDE3B, not PDE4, is a target of PKB and that activated PDE3B may regulate cAMP pools that modulate effects of PKB on thymidine incorporation and BAD phosphorylation in FDCP2 cells.


  • Insulin Signal Transduction
  • Department of Experimental Medical Science

Publishing year







Journal of Immunology





Document type

Journal article


American Association of Immunologists


  • Immunology in the medical area



Research group

  • Insulin Signal Transduction


  • ISSN: 1550-6606