Lund University is celebrating 350 years.


Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Expression and characterization of deletion recombinants of two cGMP-inhibited cyclic nucleotide phosphodiesterases (PDE-3)

  • R He
  • N Komas
  • Dag Ekholm
  • T Murata
  • M Taira
  • S Hockman
  • Eva Degerman
  • V C Manganiello
Publishing year: 1998
Language: English
Pages: 89-111
Publication/Series: Cell Biochemistry and Biophysics
Volume: 29
Issue: 1-2
Document type: Journal article
Publisher: Humana Press

Abstract english

CDNAs encoding two PDE-3 or cyclic GMP-inhibited (cGI) cyclic nucleotide phosphodiesterase (PDE) isoforms, RPDE-3B (RcGIP1) and HPDE-3A (HcGIP2), were cloned from rat (R) adipose tissue and human (H) heart cDNA libraries. Deletion and N- and C-terminal truncation mutants were expressed in Escherichia coli in order to define their catalytic core. Active mutants of both RPDE-3B and HPDE-3A included the domain conserved among all PDEs plus additional upstream and downstream sequences. An RPDE-3B mutant consisting of the conserved domain alone and one from which the RPDE-3B 44-amino acid insertion was deleted exhibited little or no activity. All active recombinants exhibited a high affinity (< 1 microM) for cyclic AMP (cAMP) and cyclic GMP (cGMP), were inhibited by cAMP, cGMP, and cilostamide, but not by rolipram, and were photolabeled with [32P]-cGMP. The IC50 values for cGMP inhibition of cAMP hydrolysis were lower for HPDE-3A than for RPDE-3B recombinants. The deduced amino acid sequences of HPDE-3A and RPDE-3B catalytic domains are very similar except for the 44-amino acid insertion not found in other PDEs. It is possible that this insertion may not only distinguish PDE-3 catalytic domains from other PDEs and identify catalytic domains of PDE-3 subfamilies or conserved members of the PDE-3 gene family, but may also be involved in the regulation of sensitivity of PDE-3s to cGMP.


  • Endocrinology and Diabetes


  • Insulin Signal Transduction
  • ISSN: 1085-9195
Eva Degerman
E-mail: eva [dot] degerman [at] med [dot] lu [dot] se


Insulin Signal Transduction

+46 46 222 85 83

+46 70 885 83 62

BMC C1121b


Lund University Diabetes Centre, CRC, SUS Malmö, Entrance 72, House 91:12. SE-205 02 Malmö. Telephone: +46 40 39 10 00