Lund University is celebrating 350 years.


Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro

  • M W Anthonsen
  • Lars Rönnstrand
  • C Wernstedt
  • Eva Degerman
  • Cecilia Holm
Publishing year: 1998
Language: English
Pages: 215-221
Publication/Series: Journal of Biological Chemistry
Volume: 273
Issue: 1
Document type: Journal article
Publisher: ASBMB

Abstract english

Hormone-sensitive lipase (HSL) is the rate-limiting enzyme in lipolysis. Stimulation of rat adipocytes with isoproterenol results in phosphorylation of HSL and a 50-fold increase in the rate of lipolysis. In this study, we used site-directed mutagenesis and two-dimensional phosphopeptide mapping to show that phosphorylation sites other than the previously identified Ser-563 are phosphorylated in HSL in response to isoproterenol stimulation of 32P-labeled rat adipocytes. Phosphorylation of HSL in adipocytes in response to isoproterenol and in vitro phosphorylation of HSL containing Ser --> Ala mutations in residues 563 and 565 (S563A, S565A) with protein kinase A (PKA), followed by tryptic phosphopeptide mapping resulted in two tryptic phosphopeptides. These tryptic phosphopeptides co-migrated with the phosphopeptides released by the same treatment of F654HPRRSSQGVLHMPLYSSPIVK675 phosphorylated with PKA. Analysis of the phosphorylation site mutants, S659A, S660A, and S659A,S660A disclosed that mutagenesis of both Ser-659 and Ser-660 was necessary to abolish the activation of HSL toward a triolein substrate after phosphorylation with PKA. Mutation of Ser-563 to alanine did not cause significant change of activation compared with wild-type HSL. Hence, our results demonstrate that in addition to the previously identified Ser-563, two other PKA phosphorylation sites, Ser-659 and Ser-660, are present in HSL and, furthermore, that Ser-659 and Ser-660 are the major activity controlling sites in vitro.


  • Endocrinology and Diabetes


  • Insulin Signal Transduction
  • Molecular Endocrinology
  • ISSN: 1083-351X
Eva Degerman
E-mail: eva [dot] degerman [at] med [dot] lu [dot] se


Insulin Signal Transduction

+46 46 222 85 83

+46 70 885 83 62

BMC C1121b


Lund University Diabetes Centre, CRC, SUS Malmö, Entrance 72, House 91:12. SE-205 02 Malmö. Telephone: +46 40 39 10 00