Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Esa Laurila

Biomedical analyst

Default user image.

Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels

Author

  • Richa Saxena
  • Benjamin F. Voight
  • Valeriya Lyssenko
  • Noel P. Burtt
  • Paul I. W. de Bakker
  • Hong Chen
  • Jeffrey J. Roix
  • Sekar Kathiresan
  • Joel N. Hirschhorn
  • Mark J. Daly
  • Thomas E. Hughes
  • Leif Groop
  • David Altshuler
  • Peter Almgren
  • Jose C. Florez
  • Joanne Meyer
  • Kristin Ardlie
  • Kristina Bengtsson Boström
  • Bo Isomaa
  • Guillaume Lettre
  • Ulf Lindblad
  • Helen N. Lyon
  • Olle Melander
  • Christopher Newton-Cheh
  • Peter Nilsson
  • Marju Orho-Melander
  • Lennart Råstam
  • Elizabeth K. Speliotes
  • Marja-Riitta Taskinen
  • Tiinamaija Tuomi
  • Candace Guiducci
  • Anna Berglund
  • Joyce Carlson
  • Lauren Gianniny
  • Rachel Hackett
  • Liselotte Hall
  • Johan Holmkvist
  • Esa Laurila
  • Marketa Sjögren
  • Maria Sterner
  • Aarti Surti
  • Margareta Svensson
  • Malin Svensson
  • Ryan Tewhey
  • Brendan Blumenstiel
  • Melissa Parkin
  • Matthew DeFelice
  • Rachel Barry
  • Wendy Brodeur
  • Jody Camarata
  • Nancy Chia
  • Mary Fava
  • John Gibbons
  • Bob Handsaker
  • Claire Healy
  • Kieu Nguyen
  • Casey Gates
  • Carrie Sougnez
  • Diane Gage
  • Marcia Nizzari
  • Stacey B. Gabriel
  • Gung-Wei Chirn
  • Qicheng Ma
  • Hemang Parikh
  • Delwood Richardson
  • Darrell Ricke
  • Shaun Purcell

Summary, in English

New strategies for prevention and treatment of type 2 diabetes (T2D) require improved insight into disease etiology. We analyzed 386,731 common single-nucleotide polymorphisms (SNPs) in 1464 patients with T2D and 1467 matched controls, each characterized for measures of glucose metabolism, lipids, obesity, and blood pressure. With collaborators (FUSION and WTCCC/UKT2D), we identified and confirmed three loci associated with T2D - in a noncoding region near CDKN2A and CDKN2B, in an intron of IGF2BP2, and an intron of CDKAL1 - and replicated associations near HHEX and in SLC30A8 found by a recent whole-genome association study. We identified and confirmed association of a SNP in an intron of glucokinase regulatory protein (GCKR) with serum triglycerides. The discovery of associated variants in unsuspected genes and outside coding regions illustrates the ability of genome-wide association studies to provide potentially important clues to the pathogenesis of common diseases.

Department/s

  • Genomics, Diabetes and Endocrinology
  • Community Medicine
  • Cardiovascular Research - Hypertension
  • Internal Medicine - Epidemiology
  • Clinical Chemistry, Malmö

Publishing year

2007

Language

English

Pages

1331-1336

Publication/Series

Science

Volume

316

Issue

5829

Document type

Journal article

Publisher

American Association for the Advancement of Science

Topic

  • Other Clinical Medicine
  • Public Health, Global Health, Social Medicine and Epidemiology
  • Medicinal Chemistry
  • Endocrinology and Diabetes

Status

Published

Research group

  • Genomics, Diabetes and Endocrinology
  • Community Medicine
  • Cardiovascular Research - Hypertension
  • Internal Medicine - Epidemiology
  • Clinical Chemistry, Malmö

ISBN/ISSN/Other

  • ISSN: 1095-9203