Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Erik Renström

Erik Renström


Erik Renström

Protein kinase A-dependent and -independent stimulation of exocytosis by cAMP in mouse pancreatic B-cells


  • Erik Renström
  • Lena Eliasson
  • Patrik Rorsman

Summary, in English

1. The mechanisms by which cAMP stimulates Ca(2+)-dependent insulin secretion were investigated by combining measurements of whole-cell Ca2+ currents, the cytoplasmic free Ca2+ concentration ([Ca2+]i) and membrane capacitance in single mouse B-cells maintained in tissue culture. 2. Cyclic AMP stimulated exocytosis > 4-fold in whole-cell experiments in which secretion was evoked by intracellular dialysis with a Ca(2+)-EGTA buffer with a [Ca2+]i of 1.5 microM. This effect was antagonized by inhibitors of protein kinase A (PKA). 3. Photorelease of cAMP from a caged precursor potentiated exocytosis at Ca2+ concentrations which were themselves stimulatory (> or = 60 nM), but was without effect in the complete absence of Ca2+. 4. Elevation of intracellular cAMP (by exposure to forskolin) evoked a 6-fold PKA-dependent enhancement of the maximal exocytotic response (determined as the maximum increase in cell capacitance that could be elicited by a train of depolarizations) in perforated-patch whole-cell recordings. 5. Exocytosis triggered by single depolarizations in standard whole-cell recordings was strongly potentiated by cAMP, but in this case the effect was unaffected by PKA inhibition. 6. When exocytosis was triggered by Ca2+ released from Ca(2+)-NP-EGTA ('caged Ca2+'), cAMP exerted a dual stimulatory effect on secretion: a rapid (initiated within 80 ms) PKA-independent phase and a late PKA-dependent component. 7. We conclude that cAMP stimulates insulin secretion both by increasing the release probability of secretory granules already in the readily releasable pool and by accelerating the refilling of this pool.

Publishing year







Journal of Physiology





Document type

Journal article


The Physiological Society


  • Physiology




  • ISSN: 1469-7793