Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Erik Renström

Erik Renström

Vice-chancellor

Erik Renström

Glucagon-like peptide I increases cytoplasmic calcium in insulin-secreting beta TC3-cells by enhancement of intracellular calcium mobilization

Author

  • J Gromada
  • S Dissing
  • K Bokvist
  • Erik Renström
  • J Frokjaer-Jensen
  • B S Wulff
  • Patrik Rorsman

Summary, in English

In the insulin-secreting beta-cell line beta TC3, stimulation with 11.2 mmol/l glucose caused a rise in the intracellular free Ca2+ concentration ([Ca2+]i) in only 18% of the tested cells. The number of glucose-responsive cells increased after pretreatment of the cells with glucagon-like peptide I (GLP-I)(7-36)amide and at 10(-11) mol/l; 84% of the cells responded to glucose with a rise in [Ca2+]i. GLP-I(7-36)amide induces a rapid increase in [Ca2+]i only in cells exposed to elevated glucose concentrations (> or = 5.6 mmol/l). The action of GLP-I(7-36)amide and forskolin involved a 10-fold increase in cytoplasmic cAMP concentration and was mediated by activation of protein kinase A. It was not associated with an effect on the membrane potential but required some (small) initial entry of Ca2+ through voltage-dependent L-type Ca2+ channels, which then produced a further increase in [Ca2+]i by mobilization from intracellular stores. The latter effect reflected Ca(2+)-induced Ca2+ release and was blocked by ryanodine. Similar increases in [Ca2+]i were also observed in voltage-clamped cells, although there was neither activation of a background (Ca(2+)-permeable) inward current nor enhancement of the voltage-dependent L-type Ca2+ current. These observations are consistent with GLP-I(7-36) amide inducing glucose sensitivity by promoting mobilization of Ca2+ from intracellular stores. We propose that this novel action of GLP-I(7-36)amide represents an important factor contributing to its insulinotropic action.

Department/s

  • Diabetes - Islet Patophysiology
  • Islet cell physiology

Publishing year

1995

Language

English

Pages

767-774

Publication/Series

Diabetes

Volume

44

Issue

7

Document type

Journal article

Publisher

American Diabetes Association Inc.

Topic

  • Endocrinology and Diabetes

Status

Published

Research group

  • Diabetes - Islet Patophysiology
  • Islet cell physiology

ISBN/ISSN/Other

  • ISSN: 1939-327X