The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Erik Renström

Erik Renström

Vice-chancellor

Erik Renström

Multisite regulation of insulin secretion by cAMP-increasing agonists: evidence that glucagon-like peptide 1 and glucagon act via distinct receptors

Author

  • J Gromada
  • W G Ding
  • Sebastian Barg
  • Erik Renström
  • Patrik Rorsman

Summary, in English

The mechanisms by which glucagon-like peptide 1(7-36)amide (GLP-1[7-36]amide) potentiates insulin secretion were investigated by measurements of whole-cell K+ and Ca2+ currents, membrane potential, the cytoplasmic Ca2+ concentration ([Ca2+]i) and exocytosis in mouse pancreatic B-cells. GLP-1(7-36)amide (10 nM) stimulated glucose-induced (10 mM) electrical activity in intact pancreatic islets. The effect was manifested as a 34% increase in the duration of the bursts of action potentials and a corresponding 28% shortening of the silent intervals. GLP-1(7-36)amide had no effect on the electrical activity at subthreshold glucose concentrations (< or = 6.5 mM). In cultured B-cells, GLP-1(7-36)amide produced a decrease of the whole-cell ATP-sensitive K+ (KATP) conductance remaining at 5 mM glucose by approximately 30%. This effect was associated with membrane depolarization and the initiation of electrical activity. GLP-1(7-36)amide produced a protein-kinase-A-(PKA-) and glucose-dependent fourfold potentiation of Ca(2+)-induced exocytosis whilst only increasing the Ca2+ current marginally. The stimulatory action of GLP-1(7-36)amide on exocytosis was mimicked by the pancreatic hormone glucagon and exendin-4, a GLP-1 receptor agonist. Whereas the stimulatory action of GLP-1(7-36)amide could be antagonized by exendin-(9-39), this peptide did not interfere with the ability of glucagon to stimulate exocytosis. We suggest that GLP-1(7-36)amide and glucagon stimulate insulin secretion by binding to distinct receptors. The GLP-1(7-36)amide-induced stimulation of electrical activity and Ca2+ influx can account for (maximally) a doubling of insulin secretion. The remainder of its stimulatory action results from a cAMP/PKA-dependent potentiation of Ca(2+)-dependent exocytosis exerted at a stage distal to the elevation of [Ca2+]i.

Publishing year

1997

Language

English

Pages

515-524

Publication/Series

Pflügers Archiv

Volume

434

Issue

5

Document type

Journal article

Publisher

Springer

Topic

  • Endocrinology and Diabetes

Keywords

  • GLP-1
  • Exocytosis
  • B-cell
  • Glucagon
  • Insulin

Status

Published

ISBN/ISSN/Other

  • ISSN: 0031-6768