Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Emma A Nilsson

Assistant researcher

Default user image.

Electroacupuncture mimics exercise-induced changes in skeletal muscle gene expression in women with polycystic ovary syndrome

Author

  • Anna Benrick
  • Nicolas J. Pillon
  • Emma Nilsson
  • Eva Lindgren
  • Anna Krook
  • Charlotte Ling
  • Elisabet Stener-Victorin

Summary, in English

Context: Autonomic nervous system activation mediates the increase in whole-body glucoseuptake in response to electroacupuncture but the mechanisms are largely unknown.Objective: To identify the molecular mechanisms underlying electroacupuncture-inducedglucose uptake in skeletal muscle in insulin-resistant overweight/obese women with andwithout polycystic ovary syndrome (PCOS).Design/Participants: In a case-control study, skeletal muscle biopsies were collected from 15women with PCOS and 14 controls before and after electroacupuncture. Gene expression andmethylation was analyzed using Illumina BeadChips arrays.Results: A single bout of electroacupuncture restores metabolic and transcriptional alterationsand induces epigenetic changes in skeletal muscle. Transcriptomic analysis revealed 180unique genes (q < 0.05) whose expression was changed by electroacupuncture, with 95% ofthe changes towards a healthier phenotype. We identified DNA methylation changes at 304unique sites (q < 0.20), and these changes correlated with altered expression of 101 genes(P < 0.05). Among the 50 most upregulated genes in response to electroacupuncture, 38% werealso upregulated in response to exercise. We identified a subset of genes that were selectivelyaltered by electroacupuncture in women with PCOS. For example, MSX1 and SRNX1 weredecreased in muscle tissue of women with PCOS and were increased by electroacupuncture andexercise. siRNA-mediated silencing of these 2 genes in cultured myotubes decreased glycogensynthesis, supporting a role for these genes in glucose homeostasis.Conclusion: Our findings provide evidence that electroacupuncture normalizes gene expressionin skeletal muscle in a manner similar to acute exercise. Electroacupuncture might thereforebe a useful way of assisting those who have difficulties performing exercise.

Department/s

  • Diabetes - Epigenetics
  • EXODIAB: Excellence in Diabetes Research in Sweden

Publishing year

2020

Language

English

Pages

2027-2041

Publication/Series

Journal of Clinical Endocrinology and Metabolism

Volume

105

Issue

6

Document type

Journal article

Publisher

Oxford University Press

Topic

  • Physiology
  • Endocrinology and Diabetes

Keywords

  • Epigenetics
  • PCOS
  • Transcriptomics

Status

Published

Research group

  • Diabetes - Epigenetics

ISBN/ISSN/Other

  • ISSN: 0021-972X