Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Corrado Cilio

Professor

Default user image.

Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression.

Author

  • Jinan Behnan
  • Paulin Isakson
  • Mrinal Joel
  • Corrado Cilio
  • Iver A Langmoen
  • Einar O Vik-Mo
  • Wiaam Badn

Summary, in English

The identity of the cells that contribute to brain tumor structure and progression remains unclear. Mesenchymal stem cells (MSCs) have recently been isolated from normal mouse brain. Here, we report the infiltration of MSC-like cells into the GL261 murine glioma model. These Brain Tumor derived Mesenchymal Stem Cells (BT-MSCs) are defined with the phenotype (Lin-Sca-1+CD9+CD44+CD166+/-) and have multipotent differentiation capacity. We show that the infiltration of BT-MSCs correlates to tumor progression; furthermore, BT-MSCs increased the proliferation rate of GL261 cells in vitro. For the first time, we report that the majority of GL261 cells expressed mesenchymal phenotype under both adherent and sphere culture conditions in vitro, and that the non-MSC population is non-tumorigenic in vivo. Although the GL261 cell line expressed mesenchymal phenotype markers in vitro, most BT-MSCs are recruited cells from host origin in both wild type GL261 inoculated into GFP-transgenic mice and GL261-GFP cells inoculated into wild type mice. We show the expression of chemokine receptors CXCR4 and CXCR6 on different recruited cell populations. In vivo, the GL261 cells change marker profile, and acquire a phenotype that is more similar to cells growing in sphere culture conditions. Finally, we identify a BT-MSC population in human glioblastoma that is CD44+CD9+CD166+ both in freshly isolated and culture-expanded cells. Our data indicate that cells with MSC-like phenotype infiltrate into the tumor stroma and play an important role in tumor cell growth in vitro and in vivo. Thus we suggest that targeting BT-MSCs could be a possible strategy for treating glioblastoma patients. Stem Cells 2013.

Department/s

  • Diabetes - Immunovirology
  • Neurosurgery
  • EXODIAB: Excellence in Diabetes Research in Sweden

Publishing year

2014

Language

English

Pages

1110-1123

Publication/Series

Stem Cells

Volume

32

Issue

5

Document type

Journal article

Publisher

AlphaMed Press

Topic

  • Cell and Molecular Biology

Status

Published

Research group

  • Diabetes - Immunovirology

ISBN/ISSN/Other

  • ISSN: 1549-4918