Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Corrado Cilio

Professor

Default user image.

Association between LTA, TNF and AGER polymorphisms and late diabetic complications.

Author

  • Eero Lindholm
  • Ekaterine Bakhtadze
  • Corrado Cilio
  • Elisabet Agardh
  • Leif Groop
  • Carl-David Agardh

Summary, in English

BACKGROUND: Several candidate genes on the short arm of chromosome 6 including the HLA locus, TNF, LTA and AGER could be associated with late diabetic complications. The aim of our study was therefore to explore whether polymorphisms (TNF -308 G-->A, LTA T60N C-->A and AGER -374 T-->A) in these genes alone or together (as haplotypes) increased the risk for diabetic complications. METHODOLOGY/PRINCIPAL FINDINGS: The studied polymorphisms were genotyped in 742 type 1 and 2957 type 2 diabetic patients as well as in 206 non-diabetic control subjects. The Haploview program was used to analyze putative linkage disequilibrium between studied polymorphisms. The TNF, LTA and AGER polymorphisms were associated with the HLA-DQB1 risk genotypes. The AGER -374 A allele was more common in type 1 diabetic patients with than without diabetic nephropathy (31.2 vs. 28.4%, p = 0.007). In a logistic regression analysis, the LTA but not the AGER polymorphism was associated with diabetic nephropathy (OR 2.55[1.11-5.86], p = 0.03). The AGER -374 A allele was associated with increased risk of sight threatening retinopathy in type 2 diabetic patients (1.65[1.11-2.45], p = 0.01) and also with increased risk for macrovascular disease in type 1 diabetic patients (OR 2.05[1.19-3.54], p = 0.01), but with decreased risk for macrovascular disease in type 2 diabetic patients (OR 0.66[0.49-0.90], p = 0.009). The TNF A allele was associated with increased risk for macrovascular complications in type 2 (OR 1.53 [1.04-2.25], p = 0.03, but not in type 1 diabetic patients. CONCLUSIONS/SIGNIFICANCE: The association between diabetic complications and LTA, TNF and AGER polymorphisms is complex, with partly different alleles conferring susceptibility in type 1 and type 2 diabetic patients. We can not exclude the possibility that the genes are part of a large haplotype block that also includes HLA-DQB1 risk genotypes.

Department/s

  • Department of Clinical Sciences, Malmö
  • Genomics, Diabetes and Endocrinology
  • Diabetes - Immunovirology

Publishing year

2008

Language

English

Publication/Series

PLoS ONE

Volume

3

Issue

6

Document type

Journal article

Publisher

Public Library of Science

Topic

  • Clinical Medicine
  • Cardiac and Cardiovascular Systems

Status

Published

Research group

  • Genomics, Diabetes and Endocrinology
  • Diabetes - Immunovirology

ISBN/ISSN/Other

  • ISSN: 1932-6203