The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Celine Fernandez

Associate professor

Default user image.

Plasma metabolites associate with all-cause mortality in individuals with type 2 diabetes

Author

  • Filip Ottosson
  • Einar Smith
  • Céline Fernandez
  • Olle Melander

Summary, in English

Alterations in the human metabolome occur years before clinical manifestation of type 2 diabetes (T2DM). By contrast, there is little knowledge of how metabolite alterations in individuals with diabetes relate to risk of diabetes complications and premature mortality. Metabolite profiling was performed using liquid chromatography-mass spectrometry in 743 participants with T2DM from the population-based prospective cohorts The Malmö Diet and Cancer-Cardiovascular Cohort (MDC-CC) and The Malmö Preventive Project (MPP). During follow-up, a total of 175 new-onset cases of cardiovascular disease (CVD) and 298 deaths occurred. Cox regressions were used to relate baseline levels of plasma metabolites to incident CVD and all-cause mortality. A total of 11 metabolites were significantly (false discovery rate (fdr) <0.05) associated with all-cause mortality. Acisoga, acylcarnitine C10:3, dimethylguanidino valerate, homocitrulline, N2,N2-dimethylguanosine, 1-methyladenosine and urobilin were associated with an increased risk, while hippurate, lysine, threonine and tryptophan were associated with a decreased risk. Ten out of 11 metabolites remained significantly associated after adjustments for cardiometabolic risk factors. The associations between metabolite levels and incident CVD were not as strong as for all-cause mortality, although 11 metabolites were nominally significant (p < 0.05). Further examination of the mortality-related metabolites may shed more light on the pathophysiology linking diabetes to premature mortality.

Department/s

  • Cardiovascular Research - Hypertension
  • EXODIAB: Excellence of Diabetes Research in Sweden
  • EpiHealth: Epidemiology for Health

Publishing year

2020

Language

English

Publication/Series

Metabolites

Volume

10

Issue

8

Document type

Journal article

Publisher

MDPI AG

Topic

  • Endocrinology and Diabetes

Keywords

  • Cardiovascular disease
  • Diabetes
  • Metabolomics
  • Mortality
  • N2,N2-dimethylguanosine and dimethylguanidino valerate

Status

Published

Project

  • AIR Lund - Artificially Intelligent use of Registers

Research group

  • Cardiovascular Research - Hypertension

ISBN/ISSN/Other

  • ISSN: 2218-1989