Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Cecilia Holm

Professor

Default user image.

The expression of hormone-sensitive lipase in clonal beta-cells and rat islets is induced by long-term exposure to high glucose

Author

  • M S Winzell
  • H Svensson
  • P Arner
  • B Ahren
  • Cecilia Holm

Summary, in English

Hormone-sensitive lipase (HSL) is expressed and enzymatically active in beta-cells and has been proposed to be involved in the generation of the lipid-derived signal that seems to be necessary for glucose-stimulated insulin secretion. In this study, we investigated whether the expression of HSL in INS-1 cells and in rat islets is affected by exposure to high glucose concentrations. Incubation of INS-1 cells in 25 mmol/l glucose for 16 and 32 h induced HSL protein expression twofold, whereas no effect was observed after 4 and 8 h of incubation. The HSL activity, defined as the diglyceride lipase activity inhibited by anti-rat HSL antibodies, constituted approximately 25% of total diglyceride lipase activity and was induced to a similar extent as HSL protein levels. The glucose effect at 16 h on HSL protein expression level was confirmed in freshly isolated rat islets. Exposure of INS-1 cells to different glucose concentrations for 16 h showed that the inductive effect on HSL protein levels was maximum at 20 mmol/l glucose (2- to 2.5-fold). Northern blot analysis demonstrated a more than threefold elevation of HSL mRNA levels. The induction was blocked by actinomycin D, and the half-life of the transcript seemed to be unchanged by high glucose, suggesting a transcriptional nature of the glucose effect on HSL gene expression. The nonmetabolizable glucose analog 2-deoxyglucose, which has no mitogenic effect, induced HSL approximately 1.3-fold, whereas mannose was similar to glucose, stimulating HSL expression 1.7- to 2-fold. The results suggest that HSL is involved in the beta-cell responses to hyperglycemia and also in generating the lipid signal that is needed in stimulus-secretion coupling.

Department/s

  • Molecular Endocrinology

Publishing year

2001

Language

English

Pages

2225-2230

Publication/Series

Diabetes

Volume

50

Issue

10

Document type

Journal article

Publisher

American Diabetes Association Inc.

Topic

  • Endocrinology and Diabetes

Status

Published

Research group

  • Molecular Endocrinology

ISBN/ISSN/Other

  • ISSN: 1939-327X