Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Cecilia Holm

Professor

Default user image.

A rapid method for the separation of vitamin D and its metabolites by ultra-high performance supercritical fluid chromatography-mass spectrometry.

Author

  • Firas Jumaah
  • Sara Larsson
  • Sofia Essén
  • Larissa Cunico
  • Cecilia Holm
  • Charlotta Turner
  • Margareta Sandahl

Summary, in English

In this study, a new supercritical fluid chromatography-mass spectrometry (SFC-MS) method has been developed for the separation of nine vitamin D metabolites within less than eight minutes. This is the first study of analysis of vitamin D and its metabolites carried out by SFC-MS. Six columns of orthogonal selectivity were examined, and the best separation was obtained by using a 1-aminoanthracene (1-AA) column. The number and the position of hydroxyl groups in the structure of the studied compounds as well as the number of unsaturated bonds determine the physiochemical properties and, thus the separation of vitamin D metabolites that is achieved on this column. All D2 and the D3 forms were baseline separated with resolution values>1.5. The effects of pressure, temperature, flow rate and different gradient modes were studied. Electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) were compared in positive mode, both by direct infusion and after SFC separation. The results showed that the sensitivity in APCI(+) was higher than in ESI(+) using direct infusion. In contrast, the sensitivity in APCI(+) was 6-fold lower than in ESI(+) after SFC separation. The SFC-MS method was validated between 10 and 500ng/mL for all analytes with coefficient of determination (R(2))≥0.999 for all calibration curves. The limits of detection (LOD) were found to range between 0.39 and 5.98ng/mL for 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) and 1-hydroxyvitamin D2 (1OHD2), respectively. To show its potential, the method was applied to human plasma samples from healthy individuals. Vitamin D3 (D3), 25-hydroxyvitamin D3 (25OHD3) and 24,25(OH)2D3 were determined in plasma samples and the concentrations were 6.6±3.0ng/mL, 23.8±9.2ng/mL and 5.4±2.7ng/mL, respectively.

Department/s

  • Centre for Analysis and Synthesis
  • Molecular Endocrinology
  • EXODIAB: Excellence in Diabetes Research in Sweden

Publishing year

2016-02-17

Language

English

Pages

191-200

Publication/Series

Journal of chromatography. A

Volume

1440

Document type

Journal article

Publisher

Elsevier

Topic

  • Medical Biotechnology
  • Analytical Chemistry

Status

Published

Research group

  • Molecular Endocrinology

ISBN/ISSN/Other

  • ISSN: 1873-3778