Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Cecilia Holm

Professor

Default user image.

Domain-structure analysis of recombinant rat hormone-sensitive lipase

Author

  • Torben Österlund
  • Birgitta Danielsson
  • Eva Degerman
  • Juan Antonio Contreras
  • Gudrun Edgren
  • Richard C Davis
  • Michael C Schotz
  • Cecilia Holm

Summary, in English

Hormone-sensitive lipase (HSL) plays a key role in lipid metabolism and overall energy homoeostasis, by controlling the release of fatty acids from stored triglycerides in adipose tissue. Lipases and esterases form a protein superfamily with a common structural fold, called the alpha/beta-hydrolase fold, and a catalytic triad of serine, aspartic or glutamic acid and histidine. Previous alignments between HSL and lipase 2 of Moraxella TA144 have been extended to cover a much larger part of the HSL sequence. From these extended alignments, possible sites for the catalytic triad and alpha/beta-hydrolase fold are suggested. Furthermore, it is proposed that HSL contains a structural domain with catalytic capacity and a regulatory module attached, as well as a structural N-terminal domain unique to this enzyme. In order to test the proposed domain structure, rat HSL was overexpressed and purified to homogeneity using a baculovirus/insect-cell expression system. The purification, resulting in > 99% purity, involved detergent solubilization followed by anion-exchange chromatography and hydrophobic-interaction chromatography. The purified recombinant enzyme was identical to rat adipose-tissue HSL with regard to specific activity, substrate specificity and ability to serve as a substrate for cAMP-dependent protein kinase. The recombinant HSL was subjected to denaturation by guanidine hydrochloride and limited proteolysis. These treatments resulted in more extensive loss of activity against phospholipid-stabilized lipid substrates than against water-soluble substrates, suggesting that the hydrolytic activity can be separated from recognition of lipid substrates. These data support the concept that HSL has at least two major domains.

Department/s

  • Department of Translational Medicine
  • Molecular Endocrinology
  • Insulin Signal Transduction
  • Department of Experimental Medical Science

Publishing year

1996

Language

English

Pages

411-420

Publication/Series

Biochemical Journal

Volume

319

Issue

Pt 2

Document type

Journal article

Publisher

Portland Press

Topic

  • Biochemistry and Molecular Biology

Status

Published

Research group

  • Molecular Endocrinology
  • Insulin Signal Transduction

ISBN/ISSN/Other

  • ISSN: 0264-6021