Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Ashfaq Ali

Bioinformatician

Default user image.

Proteomic analysis of phytophthora infestans reveals the importance of cell wall proteins in pathogenicity

Author

  • Svante Resjö
  • Maja Brus
  • Ashfaq Ali
  • Harold J. G. Meijer
  • Marianne Sandin
  • Francine Govers
  • Fredrik Levander
  • Laura J. Grenville-Briggs
  • Erik Andreasson

Summary, in English

The oomycete Phytophthora infestans is the most harmful pathogen of potato. It causes the disease late blight, which generates increased yearly costs of up to one billion euro in the EU alone and is difficult to control. We have performed a large-scale quantitative proteomics study of six P. infestans life stages with the aim to identify proteins that change in abundance during development, with a focus on preinfectious life stages. Over 10 000 peptides from 2061 proteins were analyzed. We identified several abundance profiles of proteins that were up- or downregulated in different combinations of life stages. One of these profiles contained 59 proteins that were more abundant in germinated cysts and appressoria. A large majority of these proteins were not previously recognized as being appressorial proteins or involved in the infection process. Among those are proteins with putative roles in transport, amino acid metabolism, pathogenicity (including one RXLR effector) and cell wall structure modification. We analyzed the expression of the genes encoding nine of these proteins using RT-qPCR and found an increase in transcript levels during disease progression, in agreement with the hypothesis that these proteins are important in early infection. Among the nine proteins was a group involved in cell wall structure modification and adhesion, including three closely related, uncharacterized proteins encoded by PITG-01131, PITG-01132, and PITG-16135, here denoted Piacwp1-3. Transient silencing of these genes resulted in reduced severity of infection, indicating that these proteins are important for pathogenicity. Our results contribute to further insight into P. infestans biology, and indicate processes that might be relevant for the pathogen while preparing for host cell penetration and during infection. The mass spectrometry data have been deposited to ProteomeXchange via the PRIDE partner repository with the data set identifier PXD002446.

Department/s

  • Department of Immunotechnology

Publishing year

2017-11-01

Language

English

Pages

1958-1971

Publication/Series

Molecular and Cellular Proteomics

Volume

16

Issue

11

Document type

Journal article

Publisher

American Society for Biochemistry and Molecular Biology

Topic

  • Biochemistry and Molecular Biology
  • Microbiology

Status

Published

ISBN/ISSN/Other

  • ISSN: 1535-9476