The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Andreas Lindqvist

Andreas Lindqvist

Research engineer

Andreas Lindqvist

The role of CART in islet biology


  • Nils Wierup
  • Mia Abels
  • Liliya Shcherbina
  • Andreas Lindqvist

Summary, in English

Cocaine- and amphetamine-regulated transcript (CART) is mostly known for its appetite regulating effects in the central nervous system. However, CART is also highly expressed in the peripheral nervous system as well as in certain endocrine cells. Our group has dedicated more than 20 years to understand the role of CART in the pancreatic islets and in this review we summarize what is known to date about CART expression and function in the islets. CART is expressed in both islet cells and nerve fibers innervating the islets. Large species differences are at hand and CART expression is highly dynamic and increased during development, as well as in Type 2 Diabetes and certain endocrine tumors. In the human islets CART is expressed in alpha cells and beta cells and the expression is increased in T2D patients. CART increases insulin secretion, reduces glucagon secretion, and protects against beta cell death by reducing apoptosis and increasing proliferation. It is still not fully understood how CART mediates its effects or which receptors that are involved. Nevertheless, CART is endowed with several properties that are beneficial in a T2D perspective. Many of the described effects of CART resemble those of GLP-1, and interestingly CART has been found to potentiate some of the effects of GLP-1, paving the way for CART-based treatments in combination with GLP-1-based drugs.


  • Neuroendocrine Cell Biology
  • EXODIAB: Excellence of Diabetes Research in Sweden
  • Department of Clinical Sciences, Malmö

Publishing year








Document type

Journal article review




  • Endocrinology and Diabetes



Research group

  • Neuroendocrine Cell Biology


  • ISSN: 1873-5169