The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Andreas Edsfeltdt

Andreas Edsfeldt

Associate professor

Andreas Edsfeltdt

Validation of a New Method for 2D Fusion Imaging Registration in a System Prepared Only for 3D

Author

  • Andreas Edsfeldt
  • Björn Sonesson
  • Helena Rosén
  • Marcelo H. Petri
  • Kiattisak Hongku
  • Timothy Resch
  • Nuno V. Dias

Summary, in English

Purpose: To validate a new 2D-3D registration method of fusion imaging during aortic repair in a system prepared only for 3D-3D registration and to compare radiation doses and accuracy. Materials and Methods: The study involved 189 patients, including 94 patients (median age 70 years; 85 men) who underwent abdominal endovascular aneurysm repair (EVAR) with 2D-3D fusion on an Artis zee imaging system and 95 EVAR patients (median age 70 years; 81 men) from a prior study who had 3D-3D registration done using cone beam computed tomography (CBCT). For the 2D-3D registration, an offline CBCT of the empty operating table was imported into the intraoperative dataset and superimposed on the preoperative computed tomography angiogram (CTA). Then 2 intraoperative single-frame 2D images of the skeleton were aligned with the patient’s skeleton on the preoperative CTA to complete the registration process. A digital subtraction angiogram was done to correct any misalignment of the aortic CTA volume. Values are given as the median [interquartile range (IQR) Q1, Q3]. Results: The 2D-3D registration had an accuracy of 4.0 mm (IQR 3.0, 5.0) after bone matching compared with the final correction with DSA (78% within 5 mm). By applying the 2D-3D protocol the radiation exposure (dose area product) from the registration of the fusion image was significantly reduced compared with the 3D-3D registration [1.12 Gy∙cm2 (IQR 0.41, 2.14) vs 43.4 Gy∙cm2 (IQR 37.1, 49.0), respectively; p<0.001). Conclusion: The new 2D-3D registration protocol based on 2 single-frame images avoids an intraoperative CBCT and can be used for fusion imaging registration in a system originally designed for 3D-3D only. This 2D-3D registration protocol is accurate and leads to a significant reduction in radiation exposure.

Department/s

  • Cardiovascular Research - Translational Studies
  • EXODIAB: Excellence of Diabetes Research in Sweden
  • Vascular Diseases - Clinical Research

Publishing year

2020-06-01

Language

English

Pages

468-472

Publication/Series

Journal of Endovascular Therapy

Volume

27

Issue

3

Document type

Journal article

Publisher

International Society of Endovascular Specialists

Topic

  • Radiology, Nuclear Medicine and Medical Imaging

Keywords

  • computed tomography angiography
  • cone beam computed tomography
  • endovascular aneurysm repair
  • fusion imaging
  • procedure guidance
  • radiation exposure
  • registration protocol

Status

Published

Research group

  • Cardiovascular Research - Translational Studies
  • Vascular Diseases - Clinical Research

ISBN/ISSN/Other

  • ISSN: 1526-6028