Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Anders Rosengren

Postdoctoral research fellow

Default user image.

When the genome plays dice: circumvention of the spindle assembly checkpoint and near-random chromosome segregation in multipolar cancer cell mitoses.

Author

  • David Gisselsson Nord
  • Ulf Håkanson
  • Patrick Stoller
  • Dominik Marti
  • Yuesheng Jin
  • Anders Rosengren
  • Ylva Stewénius
  • Fredrik Kahl
  • Ioannis Panagopoulos

Summary, in English

BACKGROUND: Normal cell division is coordinated by a bipolar mitotic spindle, ensuring symmetrical segregation of chromosomes. Cancer cells, however, occasionally divide into three or more directions. Such multipolar mitoses have been proposed to generate genetic diversity and thereby contribute to clonal evolution. However, this notion has been little validated experimentally. PRINCIPAL FINDINGS: Chromosome segregation and DNA content in daughter cells from multipolar mitoses were assessed by multiphoton cross sectioning and fluorescence in situ hybridization in cancer cells and non-neoplastic transformed cells. The DNA distribution resulting from multipolar cell division was found to be highly variable, with frequent nullisomies in the daughter cells. Time-lapse imaging of H2B/GFP-labelled multipolar mitoses revealed that the time from the initiation of metaphase to the beginning of anaphase was prolonged and that the metaphase plates often switched polarity several times before metaphase-anaphase transition. The multipolar metaphase-anaphase transition was accompanied by a normal reduction of cellular cyclin B levels, but typically occurred before completion of the normal separase activity cycle. Centromeric AURKB and MAD2 foci were observed frequently to remain on the centromeres of multipolar ana-telophase chromosomes, indicating that multipolar mitoses were able to circumvent the spindle assembly checkpoint with some sister chromatids remaining unseparated after anaphase. Accordingly, scoring the distribution of individual chromosomes in multipolar daughter nuclei revealed a high frequency of nondisjunction events, resulting in a near-binomial allotment of sister chromatids to the daughter cells. CONCLUSION: The capability of multipolar mitoses to circumvent the spindle assembly checkpoint system typically results in a near-random distribution of chromosomes to daughter cells. Spindle multipolarity could thus be a highly efficient generator of genetically diverse minority clones in transformed cell populations.

Department/s

  • Division of Clinical Genetics
  • Diabetes - Islet Patophysiology

Publishing year

2008

Language

English

Publication/Series

PLoS ONE

Volume

3

Issue

4

Document type

Journal article

Publisher

Public Library of Science

Topic

  • Medical Genetics

Status

Published

Research group

  • Diabetes - Islet Patophysiology

ISBN/ISSN/Other

  • ISSN: 1932-6203