Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Default user image.

Åke Lernmark

Principal investigator

Default user image.

Increased galanin expression in the celiac ganglion of BB diabetic rats

Author

  • Qi Mei
  • Thomas O Mundinger
  • Åke Lernmark
  • Gerald J Taborsky

Summary, in English

BB rats lose >50% of their islet sympathetic nerve terminals soon after diabetes onset, markedly impairing the glucagon response to activation of these nerves. In this study, we sought evidence that this degree of disease-induced nerve terminal damage affected their neuronal cell bodies. Increased galanin expression was used as a marker of the change of phenotype that occurs in neuronal cell bodies when their axons are severely damaged. The celiac ganglion (CG) was analyzed because it is a major source of the sympathetic nerves that project to the pancreatic islets. But we first needed to determine if damaging nerve terminals could increase galanin expression in this ganglion and, if so, when that expression was maximal. Severe, global nerve terminal damage produced a dramatic increase of CG galanin expression which was maximal 5 days later. We next determined if a global, but partial, nerve terminal loss would also increase galanin expression and found a significant increase of galanin mRNA and its peptide in the CG. Finally, we determined if the disease-induced, partial and islet-selective loss of nerve terminals seen in BB diabetic rats was sufficient to increase galanin: we, again, found a significant increase of galanin mRNA and its peptide in their CG. These increases did not occur in their superior cervical ganglia. We conclude that the selective damage to islet sympathetic nerve terminals seen in BB diabetic rats, rather than the systemic factors of diabetic hyperglycemia or insulin deficiency, causes the increased galanin expression observed in the CG of this animal model of type 1 diabetes.

Publishing year

2006-02

Language

English

Pages

1-10

Publication/Series

Neuropeptides

Volume

40

Issue

1

Document type

Journal article

Publisher

Elsevier

Keywords

  • Galanin
  • Ganglia
  • Islets of Langerhans
  • Messenger
  • Oxidopamine
  • Rats: Inbred BB
  • Reverse transcription polymerase chain reaction
  • RNA
  • Sympathetic
  • Type 1 Diabetes Mellitus

Status

Published

ISBN/ISSN/Other

  • ISSN: 0143-4179