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Research in context 

Evidence before this study 

The current diabetes classification into T1D and T2D relies primarily on presence (T1D) or 

absence (T2D) of autoantibodies against pancreatic islet beta cell antigens and age at diagnosis 

(earlier for T1D).  With this approach 75-85% of patients are classified as T2D. A third subgroup, 

Latent Autoimmune Diabetes in Adults (LADA, <10%), is defined by presence of autoantibodies 

against glutamate decarboxylase (GADA) with onset in adult age. In addition, several rare 

monogenic forms of diabetes have been described, including Maturity Onset Diabetes of the 

Young (MODY) and neonatal diabetes. This information is provided by national guidelines 

(ADA, WHO, IDF, Diabetes UK etc.) but has not been much updated during the past 20 years 

and very few attempts have been made to explore heterogeneity of T2D. A topological analysis 

of potential T2D subgroups using electronic health records was published in 2015 but this 

information has not been implemented in the clinic.  

Added value of this study 

Here we applied a data-driven cluster analysis of 6 simple variables measured at diagnosis in 4 

independent cohorts of newly-diagnosed diabetic patients (N=14,755) and identified 5 replicable 

clusters of diabetes patients, with significantly different patient characteristics and risk of diabetic 

complications. Particularly, individuals in the most insulin-resistant cluster 3 had significantly 

higher risk of diabetic kidney disease. 

Implications of the available evidence 

This new sub-stratification may help to tailor and target early treatment to patients who would 

benefit most, thereby representing a first step towards precision medicine in diabetes.  
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Abstract 

Background 

Diabetes is presently classified into two main forms, type 1 (T1D) and type 2 diabetes (T2D), but 

especially T2D is highly heterogeneous. A refined classification could provide a powerful tool 

individualize treatment regimes and identify individuals with increased risk of complications 

already at diagnosis. 

Methods 

We applied data-driven cluster analysis (k-means and hierarchical clustering) in newly diagnosed 

diabetic patients (N=8,980) from the Swedish ANDIS (All New Diabetics in Scania) cohort, 

using six variables (GAD-antibodies, age at diagnosis, BMI, HbA1c, HOMA2-B and HOMA2-

IR), and related to prospective data on development of complications and prescription of 

medication from patient records. Replication was performed in three independent cohorts: the 

Scania Diabetes Registry (SDR, N=1466), ANDIU (All New Diabetics in Uppsala, N=844) and 

DIREVA (Diabetes Registry Vaasa, N=3485). Cox regression and logistic regression was used to 

compare time to medication, time to reaching the treatment goal and risk of diabetic 

complications and genetic associations.  

Findings 

We identified 5 replicable clusters of diabetes patients, with significantly different patient 

characteristics and risk of diabetic complications. Particularly, individuals in the most insulin-

resistant cluster 3 had significantly higher risk of diabetic kidney disease, but had been prescribed 

similar diabetes treatment compared to the less susceptible individuals in clusters 4 and 5. The 

insulin deficient cluster 2 had the highest risk of retinopathy.  In support of the clustering, genetic 

associations to the clusters differed from those seen in traditional T2D.  

Interpretation 

We could stratify patients into five subgroups with differing disease progression and risk of 

diabetic complications. This new substratification may eventually help to tailor and target early 

treatment to patients who would benefit most, thereby representing a first step towards precision 

medicine in diabetes. 
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Introduction 

Diabetes is the fastest increasing disease worldwide and one of the greatest threats to human 

health.1 Unfortunately, current treatment strategies have been unable to stop the progressive 

course of the disease and prevent development of chronic diabetic complications. One 

explanation for these shortcomings is that diagnosis of diabetes is based upon measurement of 

only one metabolite, glucose, but the disease is very heterogeneous with regard to clinical 

presentation and progression. 

The current diabetes classification into T1D and T2D relies primarily on presence (T1D) or 

absence (T2D) of autoantibodies against pancreatic islet beta cell antigens and age at diagnosis 

(earlier for T1D).  With this approach 75-85% of patients are classified as T2D. A third subgroup,  

Latent Autoimmune Diabetes in Adults (LADA, <10%), defined by presence of autoantibodies 

against glutamate decarboxylase (GADA) is phenotypically indistinguishable from T2D at 

diagnosis but become more T1D-like with time.2 With the introduction of gene sequencing for 

clinical diagnostics several rare monogenic forms of diabetes were described, including Maturity 

Onset Diabetes of the Young (MODY) and neonatal diabetes.3, 4 

A limitation of current treatment guidelines is that they respond to poor metabolic control when it 

has developed but lack means to predict which patients will need intensified treatment. evidence 

suggests that early treatment is critical for prevention of life-shortening complications since 

target tissues seem to remember poor metabolic control decades later, also referred to as 

“metabolic memory”.5, 6 

A refined classification could provide a powerful tool to identify those at greatest risk of 

complications already at diagnosis, and enable individualized treatment regimes in the same way 

as a genetic diagnosis of monogenic diabetes guides clinicians to optimal treatment.7 With this 

aim, we present a novel diabetes classification based on unsupervised data-driven cluster analysis 

of six commonly measured variables and compare it metabolically, genetically and clinically to 

the current classification in four separate populations from Sweden and Finland. 
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Methods 

Study populations 

The ANDIS (All New Diabetics in Scania) project (http://andis.ludc.med.lu.se/) aims to recruit 

all incident cases of diabetes within Scania County in Sweden (~1,200,000 inhabitants). All 

health care providers in Scania were invited; the current registration covered the period January 

1st 2008 until November 2016 during which 177 clinics registered 14,625 patients (> 90% of 

eligible patients), aged 0-96 years within a median of 40 days (IQR 12-99) after diagnosis. 

Median follow-up time was 4.01 years (IQR 2.02-6.00). 

The Scania Diabetes Registry (SDR), recruited in the same region 1996- 2009, included >7,400 

individuals with diabetes of all types, 1,466 of whom were recruited two years or less after 

diagnosis and had all data necessary for clustering.8 Median follow-up time was 11.05 years (IQR 

8.33-14.56). 

ANDIU (All New Diabetics In Uppsala) is a project similar to ANDIS in the Uppsala region 

(~300,000 inhabitants) in Sweden (http://www.andiu.se). N=844 patients had complete data for 

all clustering variables.  

DIREVA (Diabetes Registry Vaasa) from Western Finland (~170,000 inhabitants) includes 

5,107 individuals with diabetes recruited 2009-2014.  

MDC-CVA (Malmö Diet and Cancer CardioVascular Arm) includes subjects (n=3,300), 

randomly selected from the larger Malmö Diet and Cancer study, to which all men and women 

born between 1923 and 1950 from the city of Malmö, Southern Sweden, were invited to 

participate.9  

Measurements 

In ANDIS blood samples were drawn at registration. Fasting plasma glucose was analyzed after 

an overnight fast using the HemoCue Glucose System (HemoCue AB, Ängelholm, Sweden). C-

peptide concentrations were determined using ElectroChemi–LuminiscenceImmunoassay on 

Cobas e411 (Roche Diagnostics, Mannheim, Germany) or radioimmunoassay (Human C-peptide 

RIA; Linco, St Charles, MO, USA; or Peninsula Laboratories, Belmont, CA, USA). In ANDIS 

and SDR GADA was measured by Enzyme-Linked Immunosorbent Assay (ELISA) (ref <11 
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U/ml10) or with radiobinding assays (RBA) using 35S-labelled protein11 (positive cut-off: 5 RU 

or 32 IU/ml). The RBA showed 62–88% sensitivity and 91–99% specificity, and the ELISA 

assay showed 72% sensitivity and 99% specificity (Combinatorial Autoantibody or Diabetes/Islet 

Autoantibody Standardization Programs 1998-2013). In ANDIU GADA was measured at 

Laboratory Medicine in Uppsala (ref <5 U/ml). In DIREVA, GADA were measured using 

ELISA (RSR, Cardiff, UK; positive cut-off 10 IU/ml). ZnT8A antibodies were measured using 

an RBA as previously described.12 HbA1c was measured at diagnosis using the Variant II Turbo 

HbA1c Kit-2.0 (Bio-Rad, Copenhagen, Denmark). Measurements of HbA1c, ALT, ketones and 

serum creatinine over time were obtained from the Clinical Chemistry database.  

Genotyping 

Genotyping of ANDIS samples was carried out on frozen DNA samples prepared from blood 

using Gentra Puregene Blood Kits (Qiagen, Hilden, Germany) using iPlex (Sequenom, San 

Diego, California, US) or TaqMan assays (Thermo Fisher Scientific) at the Clinical Research 

Center in Malmö, Sweden. In ANDIS, 5625 of the clustred individuals were genotyped, of which 

1714 were excluded due to non-Swedish origin and 164 due to call rate <90%. MDC-CVA 

samples were genotyped at the Broad genotyping facility using the Infinium OmniExpressExome 

v1.0 B Beadchip array (Illumina, San Diego, CA, US). Quality control was done as previously 

described.13 All SNPs were in Hardy-Weinberg equilibrium in controls. 

Definitions of diabetic complications 

Estimated glomerular filtration rate (eGFR) was calculated with the MDRD (Modification of Diet 

in Renal Disease) formula.14 Chronic kidney disease (CKD) was defined as eGFR<60 (CKD 

stage 3A) or <45 (CKD stage 3B) for more than 90 days (onset of CKD was set as the start of the 

>90 day period). End-stage renal disease (ESRD) was defined as at least one eGFR below 15 

mL/min/1·73m2. 

Macroalbuminuria was defined as at least two out of three consecutive visits with albumin 

excretion rate (AER) ≥200 µg/min, AER ≥300 mg/24 h or albumin-creatinine ratio (ACR) 

≥25/35 mg/mmol for men/women. 

Diabetic retinopathy was diagnosed by an ophthalmologist based on fundus photographs.15 

Coronary events (CE) were defined by ICD-10 codes I20-21, I24, I251, I253-I259. Stroke was 
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defined by ICD-10 codes I60-I61 and I63-I64. Individuals with known prior events were 

excluded. 

Cluster analysis 

We based the selection of model parameters on the premise that patients develop diabetes when 

they no longer can increase their insulin secretion (whatever the reason) to meet the increased 

demands imposed by obesity and insulin resistance. Additionally, parameters should be easily 

obtainable from different clinical settings without interpretation and include the minimum 

number of laboratory tests. Therefore we chose BMI, age at onset of diabetes and Homeostasis 

Model Assessment 2 estimates of beta-cell function (HOMA2-B) and insulin resistance 

(HOMA2-IR) based upon C-peptide (which performs better than insulin in diabetes patients) 

calculated using the HOMA calculator (University of Oxford, UK).16 Presence or absence of 

GADA was included as a binary variable. Cluster analysis was performed on values centered to 

mean=0 and SD=1. In ANDIS men and women were clustered separately to avoid stratification 

due to sex-dependent differences in the cluster variables and to provide separate cohorts for 

validation of results. Patients with secondary diabetes (N=162) and extreme outliers (>5 SD; 

N=42) were excluded. TwoStep clustering, of which the first step estimates the optimal number 

of clusters based upon silhouette width and the second performs hierarchical clustering, was 

performed in SPSS v23 for 2 to 15 clusters using log-likelihood as distance measure and 

Schwarz's Bayesian criterion for clustering. K-means clustering was performed with k=4 using 

the kmeansruns function (runs=100) in the fpc package in R. Only GADA negative individuals 

were included because the k-means method does not accomodate binary variables and all GADA 

positive individuals clustered together using the TwoStep method. Cluster center coordinates in 

ANDIS are presented in Table S3.  

Clusterwise stability was assesed by resampling the dataset 2,000 times and computing the 

Jaccard similarities to the original cluster.17 Generally, stable clusters should yield a Jaccard 

similarity >0·75.17 Cluster labels were assigned by examining cluster variable means. The GADA 

positive cluster was labelled as Severe Autoimmune Diabetes (SAID), the GADA negative 

cluster with the lowest mean HOMA2-B was labelled Severe Insulin-Deficient Diabetes (SIDD), 

the cluster with high HOMA2-IR and age at diagnosis was labelled Severe Insulin-Resistant 
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Diabetes (SIRD), the cluster with high BMI and low age at onset was labelled Mild Obesity-

related Diabetes (MOD) and the remaining cluster Mild Age-Related Diabetes (MARD). 

Statistical analysis 

Risk of complications was calculated using cox regression in SPSS v23. Covariates were 

included as stated in the text. Post hoc comparisons of effects across clusters were tested in Stata 

v13.1.  

Associations between clusters and genotypes were calculated using the MLE method in SNPtest2 

v2.5.2.18 The equality of odds ratios across strata was tested using seemingly unrelated estimation 

(suest) in Stata v13.1. Patients from each cluster were used as cases and non-diabetic individuals 

from the MDC-CVA cohort were used as controls. Patients of non-Swedish origin were excluded. 

Bonferroni correction was used to determine significance for multiple tests. Genetic risk scores 

were calculated based on number of risk alleles weighed by their effect sizes reported in previous 

GWAS studies and logistic regression was performed for each cluster against the controls in 

SPSS v23. 

Funding 

The funding agencies had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report. EA and LG had access to all data and were responsible for 

the decision to submit the manuscript. 

Ethical approval 

The ANDIS and SDR study protocols were approved by the Regional Ethics Review Committee 

in Lund (ANDIS: Dnr. 584/2006 and 2012/676. SDR: LU 35-99). DIREVA was approved by the 

Ethical committee in Vasa (Dnr. 6/2007). ANDIU was approved by the Regional Ethics Review 

Committee in Uppsala (Dnr. 2011/155). All participants have given written informed consent. 
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Results 

We first analyzed a cohort of 14,652 newly diagnosed diabetic patients from Sweden termed 

ANDIS. Of them, 932 (6·4%) were registered before age 18 and not included in analyses of adult 

diabetes. Of the adult patients, 204 (1·5%) had T1D (defined as GADA positive and C-peptide < 

0·3 nmol/l), 723 (5·3%) LADA (GADA-positive and C-peptide ≥ 0·3 nmol/l), 162 (1·2%) 

secondary diabetes (coexisting pancreatic disease) and 519 (3·8%) were unclassifiable due to 

missing data. The remaining 12,112 patients (88·3%) were considered to have T2D (Table S1). 

Five quantitative variables (age at diagnosis, BMI, HbA1c, HOMA2-B and HOMA2-IR), plus 

presence or absence of GADA as a binary variable, were used in cluster analysis to reclassify 

patients into novel diabetes subgroups. Patients with complete data for the clustering variables 

(N=8,980) were included in further analyses. 

First, we applied the TwoStep clustering method as implemented in SPSS. The minimum 

silhouette width was found for 5 clusters in both men (N=5,334) and women (N=3,646), 

exhibiting similar cluster distributions and characteristics (Figure S1). We verified the results 

using k-means clustering in GADA negative patients, resulting in similar cluster distributions as 

TwoStep with the same overall cluster characteristics in both sexes (Figure 1B, 2 and S2). Cluster 

stability was estimated as Jaccard means17, which were >0·8 for all clusters regardless of sex. 

Cluster 1, including 577 (6·4%) of the clustered patients (SAID) was characterized by early 

onset, relatively low BMI, poor metabolic control, insulin deficiency, and presence of GADA 

(Table S2). Cluster 2 (SIDD) encompassing 1,575 (17·5%) patients was GADA negative but 

otherwise similar to SAID: low age at onset, relatively low BMI, low insulin secretion (low 

HOMA2-B) and poor metabolic control. Cluster 3 (SIRD; n=1,373; 15·3%) was characterized by 

insulin resistance (high HOMA2-IR) and high BMI. Cluster 4 was also characterized by obesity 

but not by insulin resistance (MOD; n=1,942; 21·6%). Patients in cluster 5 were older (MARD; 

n=3,513; 39·1%) but showed, as cluster 4, only modest metabolic derangements. 

We used three independent cohorts to replicate the clustering: SDR (N=1,466), ANDIU (N=844) 

and DIREVA (N=3,485). In SDR, the optimal number of clusters was also estimated to be 5 and 

k-means (k=4) and TwoStep clustering yielded similar results (92·4% clustered identically). 

Patient distributions and cluster characteristics were similar to ANDIS (Figure 1C, S3A and B). 

Jaccard bootstrap means were >0·8 for all clusters. K-means clustering in ANDIU also replicated 
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the results from ANDIS (Figure 1D, S3D). In the DIREVA cohort we tested whether clustering 

would give similar results in patients with longer diabetes duration (mean 10·15±10·34; N=2,607) 

as newly-diagnosed diabetes (diabetes duration <2 years, N=878). Encouragingly, the results 

were comparable (Figure 1E and F, S4 A and C).  

To be clinically useful patients would need to be assigned to clusters without de novo clustering 

of a full cohort. Therefore, we assigned patients in replication cohorts to clusters based on which 

cluster they were most similar to, calculated as their Euclidian distance from the nearest cluster 

center derived from ANDIS coordinates, and found similar distributions (Figure S3 C and E, 

Figure S4 B and D). Sensitivity and specificity was highest in ANDIU and DIREVA patients 

recruited near diagnosis (Table S4), likely reflecting how and when clustering variables were 

obtained. 

We then compared disease progression, treatment and development of diabetic complications 

between clusters in ANDIS. SAID and SIDD had markedly higher HbA1c at diagnosis compared 

to other clusters, a difference persisting throughout the follow-up period (Figure 3A). 

Ketoacidosis at diagnosis was most frequent in SAID (30·5%) and SIDD (25·1%), compared to 

others (<5%, Figure S5). HbA1c was the strongest predictor of ketoacidosis at diagnosis (OR 

2·73[2·46-3·03], p=2·0x10-82, per 1SD change, Table S5). SIRD had the highest prevalence of 

non-alcoholic fatty liver disease (NAFLD, Figure S6). Zinc transporter 8A antibodies were 

primarily seen in SAID (27·3% positive compared to <1·5% in other clusters; Figure S7). 

At registration, insulin had been prescribed to 41·9% of patients in SAID and 29·1% in SIDD but 

< 4% of patients in clusters 3-5 (Table S2, Figure S8). Time to insulin was shortest in SAID (HR 

17·05[14·34-20·28] compared to MARD, Figure 4A, Table S6), followed by SIDD (HR 

9·23[7·88-10·81]). The proportion of patients on metformin was highest in SIDD and lowest in 

SAID (Figure S8, 4B), but also surprisingly low in SIRD which should benefit most from 

metformin, demonstrating that traditional classification is unable to tailor treatment to the 

underlying pathogenic defects. Kidney function and adverse reactions had no major effect on the 

proportions of patients taking metformin at this early stage of disease (Figure S9).  SIDD had the 

shortest time to a second oral diabetes treatment (Figure 4C, Table S6) and the longest time to 

reaching the treatment goal (HbA1c <52 mmol/mol; Figure 4D). 



12 

 

In ANDIS, SIRD had the highest risk of developing chronic kidney disease (CKD) during follow-

up of 3·9±2·3 years (Table S7). For CKD stage 3A (eGFR<60 ml/min) the age and sex adjusted 

risk was >2-times higher (HR 2·41[2·08-2·79], p=1·4x10-31, Figure S10A) and for stage 3B 

(eGFR<45 ml/min) >3-times higher compared to MARD (HR 3·34[2·59-4·30], p=8·3x10-21, 

Figure 3B). SIRD also showed higher risk of diabetic kidney disease defined as persistent 

macroalbuminuria (Figure S10B, HR 2·28[1·6-3·23], p=3·0x10-6). Also in the SDR cohort 

(follow-up 11·0±4·4 years), SIRD had the highest risk of CKD (Table S9), and macroalbuminuria 

(HR 2·18[1·31-3·63], p=0.0026, Figure 3D). Strikingly, SIRD patients had almost five times 

higher risk of ESRD than MARD (HR 4·89[2·68-8·93], p=2·4x10-7, Figure 3E). The increased 

prevalence of kidney disease in SIRD was also confirmed in the DIREVA cohort (Figure S12). 

Early signs of diabetic retinopathy (mean duration 135 days) were more common in SIDD than in 

other clusters (OR 1·6[1·3-1·9], p=9·7x10-7 compared to MARD; Figure S11A). The higher 

prevalence of retinopathy in SIDD was replicated in ANDIU (Figure S11B) and SDR (HR 

1·33[1·15-1·54], p=0·0001; Figure 3F, Table S10). 

Although unadjusted risk of coronary events and stroke was lowest in SAID, SIDD and MOD 

there was no significant difference in age-adjusted risk (Figure 3C, S10, Table S8 and S11). 

Finally, we analyzed genetic loci previously shown to be associated with diabetes and related 

traits19 (Table 1). Each cluster was compared to a non-diabetic cohort (MDC-CVA) from the 

same geographical region.9 Notably, no genetic variant was associated (p<0·01) with all clusters 

(Table S12). Strikingly, the strongest T2D-associated variant in the TCF7L2 (rs7903146) gene20 

was associated with SIDD, MOD and MARD, but not with SIRD (only significant difference 

after correction for multiple testing; Table 1). The variant rs10401969 in the TM6SF2 gene 

previously associated with NAFLD21 was associated with SIRD but not MOD suggesting that 

SIRD is characterized by more unhealthy (metabolic syndrome) obesity. Importantly, rs2854275 

in the HLA locus (previously associated with T1D) was strongly associated with SAID (OR 

2.05[1.69-2.56]; p=5.7x10-10), but not with SIDD (OR 0.82[0.66-1.00]; p=0.0777) supporting the 

non-autoimmune nature of the SIDD cluster. A genetic risk score for T2D (Tables S13, S14) was 

significantly associated with all clusters (p<0.0008) except SIRD (p=0.1602). An insulin 

secretion risk score was significantly associated with MOD (p=0.0002) and MARD (p=1.0x10-6) 



13 

 

and nominally with SIDD (p=0.0143) but showed no evidence of association with SAID or SIRD 

(p>0.5). 

Discussion 

Taken together, this study demonstrates that this new clustering of adult-onset diabetes patients is 

superior to the classical diabetes classification since it identifies patients with high risk of 

diabetic complications and provides information about underlying disease mechanisms, thereby 

guiding choice of therapy. Importantly, this information is available already at diagnosis. In 

contrast to previous attempts to dissect the heterogeneity of diabetes22 we used variables 

reflecting key aspects of diabetic disease that are monitored in patients. Thus, this clustering can 

easily be applied to both existing diabetes cohorts (e.g. from drug trials) and patients in the 

diabetes clinic. A web-tool to assign patients to specific clusters, provided above variables have 

been measured, is under development. 

While SAID overlapped with T1D and LADA, SIDD and SIRD represent two novel severe forms 

of diabetes previously masked within T2D. It would be reasonable to target intensified treatment 

resources to these clusters to prevent diabetic complications. SIRD had a markedly increased risk 

of kidney complications, reinforcing the association between insulin resistance and kidney 

disease.23 Insulin resistance has been associated with higher salt sensitivity, glomerular 

hypertension, hyperfiltration, and declining renal function, all hallmarks of diabetic kidney 

disease (DKD).24 The increased incidence of DKD in this study was seen in spite of relatively 

low HbA1c, suggesting that glucose-lowering therapy is not the ultimate way of preventing 

DKD. In support of this, mice with podocyte-specific knockout of the insulin receptor, 

mimicking the reduced insulin signaling seen in insulin resistant individuals, developed DKD 

even during normoglycemic conditions.25 Although differences were not as pronounced as for 

DKD, insulin deficiency and/or hyperglycemia seem to be important triggers of retinopathy with 

the highest prevalence observed in SIDD. 

The fact that clustering gave similar results in newly diagnosed patients and patients with longer 

diabetes duration, and that the key variable C-peptide remained relatively stable over time 

(Figure S13), suggests that the clusters are stable and at least partially mechanistically distinct 

rather than representing different stages of the same disease. The differences in genetic 
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associations also support this view. Especially the lack of association of the genetic risk scores 

for T2D and insulin secretion with SIRD indicate that this group might have a different etiology 

than the other clusters. Notably, hepatic insulin resistance seems to be a feature of NAFLD, as the 

NAFLD-associated SNP in the TM6SF2 gene was associated with SIRD but not with MOD.  

Limitations 

We cannot at this stage claim that the new clusters represent different etiologies of diabetes, nor 

that this represents the optimal classification of diabetes subtypes, Also, it still needs to be shown 

in prospective studies whether patients (especially from the periphery of clusters) can move 

between clusters and the exact overlap of weaker association signals will need to be investigated 

in larger cohorts. It might be possible to refine the stratification further by including additional 

cluster variables e.g. biomarkers, genotypes or genetic risk scores. Future genome-wide 

association studies might also be able to better describe the genetic architecture of the different 

clusters and determine the inherited proportion of each cluster using heritability partitioning 

models.26 This classification was derived primarily on Northern Europeans with limited non-

Scandinavian representation, and the applicability of this strategy to patients of other ethnicity 

needs to be assessed. Only two types of auto-antibodies were measured and the influence of other 

antibodies on clustering performance is unknown. We also did not have data on some known risk 

factors for diabetic complications, such as blood pressure and blood lipids, and could therefore 

not include these in the analysis. 

Conclusions 

Taken together, the current data demonstrate that the combined information from a few variables 

central to the development of diabetes is superior to measurement of only one metabolite, 

glucose. By combining this information from diagnosis with information in the health care 

system this study provides a first step towards a more precise, clinically useful, stratification, 

representing an important step towards precision medicine in diabetes. This clustering also opens 

up for randomized trials targeting insulin secretion in SIDD and insulin resistance in SIRD. 
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Figure 1. Patient distribution using different methods for classification. 

Distribution of ANDIS patients included in the clustering using (A) traditional classification and 

(B) k-means clustering N=8,980. Distribution of patients using k-means clustering in SDR, 

N=1,466 (C), ANDIU, N=844 (D) and in DIREVA stratified for newly diagnosed, N=878 (E) 

and long duration, 2,607 (F). 
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Figure 2. Cluster characteristics in ANDIS. 

Distributions of HbA1c (mmol/mol) at diagnosis, and BMI (kg/m2), age (years), HOMA2-B (%) 

and HOMA2-IR at registration in ANDIS for each cluster. K-means clustering was performed 

separately for men and women, pooled data are shown here (cluster 2-5).  
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Figure 3. Progression of disease over time by cluster  

Figure 3 shows mean HbA1c over time by loess regression (A), time to CKD at least stage 3B 

(B) and coronary events (C) in ANDIS; Macroalbuminuria (D), ESRD (E) and mild non-

proliferative to proliferative diabetic retinopathy (F), in the SDR cohort. Kidney function was not 

tested at diagnosis and therefore set to the first screening date. Thus it is not known how many 

were already affected at diagnosis.  
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Figure 4. Antidiabetic therapy in ANDIS during follow-up. 

Cox regressions of time to treatment with insulin (A), metformin (B), oral medication other than 

metformin (C) or (D) reaching treatment goal (HbA1c <52mmol/mol). Cluster 1/SAID had the 

shortest time to insulin. Cluster 2/SIDD had a shorter time to insulin, metformin and any other 

oral medication than clusters 3 to 5. Despite this, cluster 2/SIDD reached the treatment goal 

significantly later than other clusters. For statistics see table S6.  



  

 

 Table 1. Genetic associations with specific ANDIS clusters reaching at least nominal significance for difference between clusters 2 to 5. 

   
 

1/SAID 2/SIDD 3/SIRD 4/MOD 5/MARD 
Difference 

cluster 2-5 

  
 

 
N=313 N=676 N=603 N=727 N=1646  

SNP Gene EA/ NEA MAF OR P OR P OR P OR P OR P P 

rs7903146 TCF7L2 T/C 0·26 1·17(0·97-1·40) 0·0766 1·51(1·33-1·71) 2·8x10-10 1·00(0·87-1·15) 0·8626 1·38(1·21-1·56) 5·7x10-7 1·41(1·28-1·55) 1·1x10-12 9·6x10-6* 

rs2237895 KCNQ1 C/T 0.41 1.08(0.91-1.28) 0.3106 1.13(1.00-1.28) 0.0518 0.85(0.74-0.97) 0.0272 0.98(0.86-1.10) 0.8770 1.13(1.03-1.23) 0.0196 0.0008 

rs1111875 HHEX/IDE G/A 0·41 1·16(0·98-1·38) 0·1044 1·21(1·07-1·37) 0·0045 1·05(0·92-1·19) 0·5104 0·94(0·84-1·06) 0·3139 1·11(1·02-1·22) 0·0228 0·0106 

rs4402960 IGF2BP2 T/G 0·29 1·04(0·87-1·24) 0·5013 1·23(1·08-1·40) 0·0002 1·01(0·88-1·16) 0·5279 1·04(0·92-1·18) 0·3089 1·22(1·11-1·33) 2·1x10-6 0·0117 

rs10811661 CDKN2B T/C 0·16 0·87(0·70-1·08) 0·2421 1·33(1·11-1·59) 0·0014 0·98(0·83-1·17) 0·8494 0·99(0·84-1·16) 0·9221 1·18(1·04-1·33) 0·0054 0·0149 

rs10830963 MTNR1B G/C 0·29 0·84(0·70-1·01) 0·0540 0·93(0·82-1·07) 0·2643 0·89(0·77-1·02) 0·0555 1·13(1·00-1·28) 0·0673 1·05(0·96-1·15) 0·2859 0·0151 

rs13266634 SLC30A8 T/C 0·31 0·98(0·82-1·17) 0·7814 0·93(0·82-1·06) 0·2302 1·11(0·97-1·27) 0·1071 1·07(0·94-1·21) 0·2986 0·92(0·83-1·01) 0·04573 0·0160 

rs12970134 MC4R G/A 0·27 0·95(0·79-1·14) 0·5238 0·97(0·85-1·11) 0·5494 0·99(0·86-1·13) 0·5942 0·87(0·77-0·99) 0·0229 1·07(0·97-1·18) 0·1847 0·0230 

rs10401969 TM6SF2 T/C 0·10 0·75(0·58-0·97) 0·0376 0·69(0·58-0·83) 0·0002 0·62(0·52-0·75) 3·1x10-6 0·89(0·73-1·07) 0·2603 0·77(0·67-0·89) 0·0005 0·0233 

rs4607103 ADAMTS9-AS2 T/C 0·24 1·05(0·87-1·27) 0·5399 0·89(0·77-1·03) 0·1547 0·93(0·80-1·08) 0·4245 1·12(0·98-1·27) 0·0642 0·92(0·83-1·01) 0·1314 0·0278 

rs17271305 VPS13C G/A 0·40 1·00(0·84-1·19) 0·9325 0·97(0·86-1·10) 0·8396 1·11(0·98-1·26) 0·0921 0·88(0·78-0·99) 0·0491 0·93(0·85-1·02) 0·1678 0·0281 

rs11920090 SLC2A2 T/A 0·13 0·94(0·74-1·20) 0·5404 0·83(0·70-0·99) 0·01624 0·91(0·76-1·09) 0·2263 0·97(0·82-1·16) 0·6305 1·08(0·95-1·24) 0·4351 0·0368 

rs5219 KCNJ11 T/C 0·38 1·05(0·88-1·25) 0·6114 1·18(1·04-1·34) 0·0121 1·03(0·90-1·18) 0·6737 1·28(1·13-1·44) 0·0001 1·10(1·01-1·21) 0·0324 0·0453 

rs7961581 TSPAN8 T/C 0·26 0·97(0·80-1·17) 0·6936 1·05(0·92-1·21) 0·5490 1·13(0·98-1·31) 0·1145 0·99(0·87-1·13) 0·7963 0·92(0·84-1·02) 0·1135 0·0464 

Maximum likelihood estimation using geographically matched non-diabetic individuals as controls (N=2,754). EA=Effect allele; NEA=Non effect allele 

*Significant after correction for multiple testing (77 tests). 
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