Lund University is celebrating 350 years. Read more on lunduniversity.lu.se

Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Residual platelet ADP reactivity after clopidogrel treatment is dependent on activation of both the unblocked P2Y(1) and the P2Y (12) receptor and is correlated with protein expression of P2Y (12).

Author:
  • Oscar Braun
  • Stefan Amisten
  • Anna-Karin Wihlborg
  • Karen Hunting
  • David Nilsson
  • David Erlinge
Publishing year: 2007
Language: English
Pages: 195-201
Publication/Series: Purinergic Signalling
Volume: 3
Issue: 3
Document type: Journal article
Publisher: Springer

Abstract english

Two ADP receptors have been identified on human platelets: P2Y(1) and P2Y(12). The P2Y(12) receptor blocker clopidogrel is widely used to reduce the risks in acute coronary syndromes, but, currently, there is no P2Y(1) blocker in clinical use. Evidence for variable responses to clopidogrel has been described in several reports. The mechanistic explanation for this phenomenon is not fully understood. The aim of this study was to examine mechanisms responsible for variability of 2MeS-ADP, a stable ADP analogue, induced platelet reactivity in clopidogrel-treated patients. Platelet reactivity was assessed by flow cytometry measurements of P-selectin (CD62P) and activated GpIIb/IIIa complex (PAC-1). Residual 2MeS-ADP activation via the P2Y(12) and P2Y(1) receptors was determined by co-incubation with the selective antagonists AR-C69931 and MRS2179 in vitro. P2Y(1) and P2Y(12) receptor expression on both RNA and protein level were determined, as well as the P2Y(12) H1 or H2 haplotypes. Our data suggest that the residual platelet activation of 2MeS-ADP after clopidogrel treatment is partly due to an inadequate antagonistic effect of clopidogrel on the P2Y(12) receptor and partly due to activation of the P2Y(1) receptor, which is unaffected by clopidogrel. Moreover, a correlation between increased P2Y(12) protein expression on platelets and decreased response to clopidogrel was noticed, r(2)=0.43 (P<0.05). No correlation was found between P2Y(12) mRNA levels and clopidogrel resistance, indicating post-transcriptional mechanisms. To achieve additional ADP inhibition in platelets, antagonists directed at the P2Y(1) receptor could be more promising than the development of more potent P2Y(12) receptor antagonists.

Keywords

  • Cell and Molecular Biology

Other

Published
  • ISSN: 1573-9546
E-mail: oscar.braun [at] med.lu.se

Physician

Cardiology

+46 46 17 36 90

32

Project manager

Heart Failure and Mechanical Support

+46 46 17 36 90

32

Research project participant

Molecular Epidemiology and Cardiology

32

Lund University Diabetes Centre, CRC, SUS Malmö, Entrance 72, House 91:12. SE-205 02 Malmö. Telephone: +46 40 39 10 00