Lund University is celebrating 350 years. Read more on lunduniversity.lu.se

Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Functions of the N-terminal region of cyclic nucleotide phosphodiesterase 3 (PDE 3) isoforms

Author:
  • Y Kenan
  • T Murata
  • Y Shakur
  • Eva Degerman
  • V C Manganiello
Publishing year: 2000
Language: English
Pages: 12331-12338
Publication/Series: Journal of Biological Chemistry
Volume: 275
Issue: 16
Document type: Journal article
Publisher: ASBMB

Abstract english

The N-terminal portion of phosphodiesterase (PDE) 3 was arbitrarily divided into region 1 (amino acids 1-300), which contains a large hydrophobic domain with six predicted transmembrane helices, and region 2 (amino acids 301-500), with a smaller hydrophobic domain ( approximately 50 residues). To analyze these regions, full-length human (H)PDE3A and mouse (M)PDE3B and a series of N-terminal truncated mutants were synthesized in Sf9 cells. Activities of HPDE3A, H3A-Delta189, MPDE3B, and M3B-Delta196, which retained all or part of the hydrophobic domain in region 1, were recovered almost entirely in particulate fractions. H3A-Delta321 and M3B-Delta302, containing region 2, were recovered essentially equally in particulate and cytosolic fractions. H3A-Delta397 and H3A-Delta457, lacking both hydrophobic domains, were predominantly cytosolic. H3A-Delta510 and M3B-Delta604, lacking both regions 1 and 2, were virtually completely cytosolic. M3B-Delta196 eluted as a large aggregated complex during gel filtration. With removal of greater amounts of N-terminal sequence, aggregation of PDE3 decreased, and H3A-Delta607, H3A-Delta721, and M3B-Delta604 eluted as dimers. Truncated HPDE3A proteins were more sensitive than full-length HPDE3A to inhibition by lixazinone. These results suggest that the hydrophobic domains in regions 1 and 2 contain structural determinants important for association of PDE3 with intracellular membranes, as well for self-association or aggregation during gel filtration and sensitivity to a specific inhibitor.

Keywords

  • Endocrinology and Diabetes

Other

Published
  • Insulin Signal Transduction
  • ISSN: 1083-351X
Eva Degerman
E-mail: eva.degerman [at] med.lu.se

Professor

Insulin Signal Transduction

+46 46 222 85 83

+46 70 885 83 62

BMC C1121b

66

Lund University Diabetes Centre, CRC, SUS Malmö, Entrance 72, House 91:12. SE-205 02 Malmö. Telephone: +46 40 39 10 00