Lund University is celebrating 350 years. Read more on lunduniversity.lu.se

Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Polymorphisms in the gene encoding the voltage-dependent Ca(2+) channel Ca (V)2.3 (CACNA1E) are associated with type 2 diabetes and impaired insulin secretion

Author:
  • Johan Holmkvist
  • Damon Tojjar
  • Peter Almgren
  • Valeriya Lyssenko
  • C M Lindgren
  • B Isomaa
  • T Tuomi
  • Göran Berglund
  • Erik Renström
  • Leif Groop
Publishing year: 2007
Language: English
Pages: 2467-2475
Publication/Series: Diabetologia
Volume: 50
Issue: 12
Document type: Journal article
Publisher: Springer Verlag

Abstract english

AIMS/HYPOTHESIS: Glucose-stimulated insulin secretion is dependent on the electrical activity of beta cells; hence, genes encoding beta cell ion channels are potential candidate genes for type 2 diabetes. The gene encoding the voltage-dependent Ca(2+) channel Ca(V)2.3 (CACNA1E), telomeric to a region that has shown suggestive linkage to type 2 diabetes (1q21-q25), has been ascribed a role for second-phase insulin secretion. METHODS: Based upon the genotyping of 52 haplotype tagging single nucleotide polymorphisms (SNPs) in a type 2 diabetes case-control sample (n = 1,467), we selected five SNPs that were nominally associated with type 2 diabetes and genotyped them in the following groups (1) a new case-control sample of 6,570 individuals from Sweden; (2) 2,293 individuals from the Botnia prospective cohort; and (3) 935 individuals with insulin secretion data from an IVGTT. RESULTS: The rs679931 TT genotype was associated with (1) an increased risk of type 2 diabetes in the Botnia case-control sample [odds ratio (OR) 1.4, 95% CI 1.0-2.0, p = 0.06] and in the replication sample (OR 1.2, 95% CI 1.0-1.5, p = 0.01 one-tailed), with a combined OR of 1.3 (95% CI 1.1-1.5, p = 0.004 two-tailed); (2) reduced insulin secretion [insulinogenic index at 30 min p = 0.02, disposition index (D (I)) p = 0.03] in control participants during an OGTT; (3) reduced second-phase insulin secretion at 30 min (p = 0.04) and 60 min (p = 0.02) during an IVGTT; and (4) reduced D (I) over time in the Botnia prospective cohort (p = 0.05). CONCLUSIONS/INTERPRETATION: We conclude that genetic variation in the CACNA1E gene contributes to an increased risk of the development of type 2 diabetes by reducing insulin secretion.

Keywords

  • Endocrinology and Diabetes

Other

Published
  • Diabetes and Endocrinology
  • Internal Medicine
  • Islet patophysiology
  • ISSN: 1432-0428
Erik Renström
E-mail: erik.renstrom [at] med.lu.se

Deputy head of department

Department of Clinical Sciences, Malmö

+46 40 39 11 57

+46 40 39 11 57

Principal investigator

Islet patophysiology

+46 40 39 11 57

+46 40 39 11 57

20-3-308

33

Lund University Diabetes Centre, CRC, SUS Malmö, Entrance 72, House 91:12. SE-205 02 Malmö. Telephone: +46 40 39 10 00