Lund University is celebrating 350 years. Read more on lunduniversity.lu.se

Menu

Javascript is not activated in your browser. This website needs javascript activated to work properly.
You are here

Increased DNA Methylation and Decreased Expression of PDX-1 in Pancreatic Islets from Patients with Type 2 Diabetes.

Author:
  • Beatrice Yang
  • Tasnim Dayeh
  • Petr Volkov
  • Clare L Kirkpatrick
  • Siri Malmgren
  • Xingjun Jing
  • Erik Renström
  • Claes Wollheim
  • Marloes Dekker Nitert
  • Charlotte Ling
Publishing year: 2012
Language: English
Pages: 1203-1212
Publication/Series: Molecular Endocrinology
Volume: 26
Issue: 7
Document type: Journal article
Publisher: The Endocrine Society

Abstract english

Mutations in pancreatic duodenal homeobox 1 (PDX-1) can cause a monogenic form of diabetes (maturity onset diabetes of the young 4) in humans, and silencing Pdx-1 in pancreatic β-cells of mice causes diabetes. However, it is not established whether epigenetic alterations of PDX-1 influence type 2 diabetes (T2D) in humans. Here we analyzed mRNA expression and DNA methylation of PDX-1 in human pancreatic islets from 55 nondiabetic donors and nine patients with T2D. We further studied epigenetic regulation of PDX-1 in clonal β-cells. PDX-1 expression was decreased in pancreatic islets from patients with T2D compared with nondiabetic donors (P = 0.0002) and correlated positively with insulin expression (rho = 0.59, P = 0.000001) and glucose-stimulated insulin secretion (rho = 0.41, P = 0.005) in the human islets. Ten CpG sites in the distal PDX-1 promoter and enhancer regions exhibited significantly increased DNA methylation in islets from patients with T2D compared with nondiabetic donors. DNA methylation of PDX-1 correlated negatively with its gene expression in the human islets (rho = -0.64, P = 0.0000029). Moreover, methylation of the human PDX-1 promoter and enhancer regions suppressed reporter gene expression in clonal β-cells (P = 0.04). Our data further indicate that hyperglycemia decreases gene expression and increases DNA methylation of PDX-1 because glycosylated hemoglobin (HbA1c) correlates negatively with mRNA expression (rho = -0.50, P = 0.0004) and positively with DNA methylation (rho = 0.54, P = 0.00024) of PDX-1 in the human islets. Furthermore, while Pdx-1 expression decreased, Pdx-1 methylation and Dnmt1 expression increased in clonal β-cells exposed to high glucose. Overall, epigenetic modifications of PDX-1 may play a role in the development of T2D, given that pancreatic islets from patients with T2D and β-cells exposed to hyperglycemia exhibited increased DNA methylation and decreased expression of PDX-1. The expression levels of PDX-1 were further associated with insulin secretion in the human islets.

Keywords

  • Endocrinology and Diabetes

Other

Published
  • Diabetes and Endocrinology
  • Epigenetics and Diabetes
  • Molecular Metabolism
  • Islet patophysiology
  • ISSN: 0888-8809
Erik Renström
E-mail: erik.renstrom [at] med.lu.se

Deputy head of department

Department of Clinical Sciences, Malmö

+46 40 39 11 57

+46 40 39 11 57

Principal investigator

Islet patophysiology

+46 40 39 11 57

+46 40 39 11 57

20-3-308

33

Lund University Diabetes Centre, CRC, SUS Malmö, Entrance 72, House 91:12. SE-205 02 Malmö. Telephone: +46 40 39 10 00